Multimodal learning analytics

Author: Blikstein, P.
Year: 2013
Project: Multimodal Learning Analytics
Type: Refereed Conference Paper/Poster/Demo (with Proceedings)
Conference/Journal: LAK 2013

Paulo Blikstein. 2013. Multimodal learning analytics. In Proceedings of the Third International Conference on Learning Analytics and Knowledge (LAK ’13), Dan Suthers and Katrien Verbert (Eds.). ACM, New York, NY, USA, 102-106.



New high-frequency data collection technologies and machine learning analysis techniques could offer new insights into learning, especially in tasks in which students have ample space to generate unique, personalized artifacts, such as a computer program, a robot, or a solution to an engineering challenge. To date most of the work on learning analytics and educational data mining has focused on online courses or cognitive tutors, in which the tasks are more structured and the entirety of interaction happens in front of a computer. In this paper, I argue that multimodal learning analytics could offer new insights into students’ learning trajectories, and present several examples of this work and its educational application.