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ABSTRACT 
Microcontroller-based or physical computing devices have been 
used in educational settings for many years for robotics, 
environmental sensing, scientific experimentation, and interactive 
art. In this paper, we discuss design principles underlying the 
several available platforms for physical computing, based on a 
historical analysis of the development of these devices, and data 
from workshops conducted with students. We evaluate two of the 
main frameworks for physical computing (“Cricket” model and 
“Breakout” model), discuss affordances of each platform, and 
propose a new software and hardware design for microcontroller -
based platforms. 

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computers Uses in Education 

General Terms 
Design, Experimentation 

Keywords 
Education, interaction design, physical computing, robotics. 

1. INTRODUCTION 
Seymour Papert famously compared the use of the BASIC 
programming language for kids and the “qwerty” keyboard layout 
[5]. Designed to slow down typers in the early days of mechanical 
typewriters, the “qwerty” keyboard became too popular to be 
replaced by a better design, even when the original design 
rationale was obsolete. In a similar vein, Papert also criticizes the 
techno-centric approach in educational technologies which are 
often designed from needs and constraints of technologists instead 
of students. 

This paper initiates a discussion about the design of physical 
computing platforms for children. Surprisingly, despite the 
popularity of these platforms, there is little research examining 
this topic from a usability perspective, taking into account the 
history of the development of these platforms. Could the field of 
interaction design for children be suffering from a version of the 

“qwerty” phenomena – importing popular technologies from other 
professional fields without the necessary adaptations for their use 
by children? In this paper, we will discuss two prevalent designs 
for microcontroller-based devices for children, and argue for a 
more careful consideration of their affordances and usability by 
young audiences. We will also introduce the idea of Spatial 
Computing [9] and how it could constitute an alternative 
programming paradigm for physical computing, which could be a 
better fit for the projects typically done by students. 

The history of the use of microcontrollers in education begins 
with probeware (i.e., data acquisition devices), since Bill Walton’s 
Laboratory Calculus at EDC in the early 70s [11]. Soon after, 
Papert and collaborators first envisioned the use of programmable 
robotics with children [4]. However, it was not until the late 80s 
and early 90s, when designers started to create products especially 
tailored for use in education that educational robotics became 
popular (for example, the Handy Board, the Handy Cricket and 
the Lego Mindstorms kit, [3, 6, 7]). More recently, the Lego NXT 
kit, the Pico Cricket, the GoGo Board [8], and the MIT Tower [2] 
have incorporated new features based on advanced sensing and 
modular design. Other platforms such as the Phidgets, are also 
part of this group, and cutting edge frameworks such as the Handy 
Board Blackfin are practically a full-blown computer. 

However, another design tradition developed in the early 2000s, 
more focused on expandability and exposing the microcontroller’s 
connection for use by other circuits, such as Wiring, the CREATE 
USB interface (later CUI32), and Basic Stamp, and PICAXE. 
Launched in 2005, as a fork of the Wiring platform, the Arduino 
design was the culmination of this design, attracting users in 
massive numbers, and becoming the de-facto standard in physical 
computing. Several platforms have used arduino-inspired designs, 
such as the Freeduino, Cortino, Netduino, and Chipino. The 
popularization of physical computing brought about by Arduino-
inspired designs has been very positive for the IDC community. 
Microcontroller programming has been made affordable, 
compatible, multiplatform, and approachable to an unprecedented 
number of people, and the synergy in the community has 
produced more than 100 add-ons board (shields) and numerous 
software libraries. 

Despite all the positive aspects of the advent of these platforms, 
one aspect needs to be reconsidered by researchers – how much 
do the hardware design principles impact how approachable and 
usable a platform is for young audiences with little technical 
interest or background? What are the consequences for 
educational use of the design choices made for the 
Arduino/Wiring-inspired platforms, compared to Cricket-like 
platforms? And finally, how can we rethink programming for 
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physical computing, and how can we better integrate software and 
hardware to make it more approachable for children? 

Constructionist researchers have shown since the sixties that not 
all programming languages are made equal [4, 5]. Logo has had a 
significant impact in K12 education because it was easy to learn 
and use by the average child, and designed based on carefully-
crafted, theory-inspired design principles (low threshold, high 
ceiling, body sintonicity, etc.). Based on them, Papert and 
collaborators made a strong case for why LISP and BASIC were 
not good choices, and why there was a need to have a special 
language for children. They made the case that media matters, in 
other words, the particular affordances and properties of the 
constructive building blocks offered to children are determinant 
for what they can build, create, and learn. In particular, they made 
an important distinction between understanding the inner 
workings of a technology and the content that we want children to 
learn using them. For example, Papert was interested in Logo as a 
way to for children to learn the powerful ideas in mathematics and 
computer science (i.e., differential geometry, recursion, etc.) and 
not how the computer’s memory was being managed by the 
operating system or the transistors were wired inside the 
microprocessor. The history of Logo, and more recently of the 
Scratch programming environment, shows how this design 
principle is crucial and powerful to engage children with 
technological tools for learning. 

2. HARDWARE MODELS 
2.1 The “Cricket” model 
One of the first widely used microcontroller-based devices for 
children, the MIT Cricket [3], was also the origin of the LEGO 
Mindstorms kit and inspired an entire generation of devices. The 
Crickets were designed for autonomous use – it executed 
programs stored in its internal memory, but it was not designed to 
interact with software being used on the computer. Therefore, it 
was optimized for autonomy. The Cricket was compact, light, 
used infrared to connect with the computer (to enable quick, 
wireless reprogramming and resetting), and had a battery pack. In 
addition, because of its use in robotics, it had independent 
polarized connectors for motors and sensors, motor driver chips, 
and resistors for sensors inputs. The LEGO Mindstorms kit, NXT 
and WeDo kits, the GoGo Board, and the PicoCricket also 
incorporated this same design. In this design, each port has 
independent pins for ground, power, and signal, which enables 
children to connect devices without any additional circuitry 
(breadboard, resistors, etc.), and the external components to be 
“off the shelf” sensors, light bulbs, or LEDs without any 
additional components. Plugging a sensor or a motor to such 
platforms is as simple as plugging a device to an electrical outlet, 
and builds on this familiar practice. The battery pack, in most of 
these designs, serves as both autonomous power, physical support, 
and protection for the exposed circuitry underneath the board. In 
short, they were designed to be low-threshold, mobile, 
autonomous, sturdy devices, able to survive daily use by children. 

The Cricket and the GoGo Board platforms also included support 
for add-on boards, using a custom bus (Cricket) or the industry-
standard I2C architecture (GoGo Board). Finally, the GoGo Board 
brought some other unique contributions. The first was the 
tethered mode, with which users could leave the board connected 
to the computer through a USB cable, and bring the sensor data in 
real time to the computer, communicating with several software 
packages such as Microworlds, Scratch, Microsoft Visual Studio, 

Adobe Flash, and NetLogo. The second was the fact that it was 
open-source, easy to build with simple tools, and low-cost. 
Cricket-inspired designs have been refined for more than a decade 
to enable children to quickly build robotics and physical 
computing projects – the latest generation of devices, such as 
PicoCrickets, offers a true plug-and-play experience. 

2.2 The “Breakout” model 
Arduino-like platforms were originally created by professional 
interaction designers for college-level physical computing 
projects. Born at the Ivrea Institute in Italy in 2005, as a fork of 
the Wiring and the Processing projects, the design principles were 
to have a simple, low-cost and extensible platform. The Arduino 
architecture achieves its goal of expandability and flexibility by 
exposing the microcontrollers’ pins and capabilities to the user. 
This “breakout” design, also present in architectures such as the 
Propeller and Basic Stamp, eliminates one level of abstraction by 
foregrounding the microcontroller’s internal architecture. The pins 
are reconfigurable and not assigned to particular functions. The 
advantages of such design decision are dramatic: for example, it’s 
easy to move from an Arduino prototype to a custom printed 
circuit board by adding the microcontroller and some components 
to a new board, keeping the pin assignments and code. It is also a 
very flexible environment for programming, since pins can be 
dynamically allocated to different purposes. Also, many 
components are off loaded to the breadboard, such as resistors and 
motor drivers, reducing cost and component count. 

2.3 The Cricket vs. Breakout design 
Both platforms were designed for different audiences and use 
cases, but the literature is scarce in contrasting them. The 
comparison is important in the context of optimizing design 
decisions for use with young audiences, especially in middle 
school, when children have a limited understanding of basic 
concepts in physics and electronics. We present relative 
advantages and shortcomings in Table 1. With [Ed], we indicated 
items that are commonly needed in educational environments, and 
with [Ex], items commonly needed by experts. This classification 
is based on our experience working with both groups in robotics 
and physical computing workshops for novices [8, 9, 10]. 

Table 1. Comparison between Cricket vs. Breakout designs 

Item Cricket design Breakout designs 
Learning curve Easy More difficult 
Programming [Ed] Logo-like C-like 
External components 
[Ed] None, mostly Many (resistors, 

etc.) 
Autonomy [Ed] Out of the box No, need shields 
Robustness of 
connections [Ed] 

High 
(polarized) 

Low (can easily 
come apart) 

Auto-ID of sensors Some designs No 
Motor drivers [Ed] Yes No, need shields 
Batteries [Ed] Yes No, need shields 
Independent ports [Ed] Yes No, need shields 
Expandability [Ex] Low High 
Number of ports [Ex] Low High 
Reusable MCU [Ex] No Yes 
Complex programs [Ex] Mostly no Yes 
Libraries [Ex] Some Many 
One conclusion of this comparison is that some of the crucial 
requirements for educational use are not present in the breakout-
inspired boards, conversely, many advanced features are indeed 
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present, but absent from most of the Cricket-inspired platforms. 
Some successful and ingenious cross-over designs exist, such as 
the LilyPad Arduino [1], which has custom circuit boards for 
LEDs, sensors, and motors already supplied with soldered 
resistors and extra components, making its use much more 
approachable by novices. 

We have run robotics workshops for several years in a variety of 
countries and socioeconomic settings. More recently, we started to 
run studies in which students use both “cricket” and “breakout” 
designs, in the context of physical computing classes for 
middle/high school, undergraduates, and non-technical graduate 
students. One consistent observation when introducing robotics to 
young audiences is that their knowledge of electricity and physics 
is extremely basic. We repeatedly found that high-school and non-
technical undergraduate students could not understand several 
basic concepts, for example: (1) the difference between analog, 
PWM, and digital pins, (2) what abbreviations such as “GND,” 
“PWM” and “Vcc” meant, (3) the difference between 5V and 
3.3V, (4) the need for of “pull-up” and “pull-down,” resistors (5) 
voltage/current dividers. Understanding the architecture of a 
breadboard was also challenging. The overhead involved in 
explaining those technical details was significant, and generated 
considerable anxiety in novice users, who reported having used 
the breakout-based boards without understanding the rationale of 
the physical connections. Indeed, just like writing a BASIC 
program, many of those technical issues are not intrinsically 
important for the task of building physical computing devices. 

A second problem was that more often than not students wanted 
to build autonomous robots and cars, and therefore needed a 
power source. Usually they would connect a 9V battery to a 
power jack and tape it to the board, which would often come 
apart. Children often want to drive and reverse motors using their 
boards, which required a separate shield. Finally, we found that 
offering simple autonomous sensing without programming is a 
very effective tool to introduce robotics and sensors. In breakout-
inspired platforms, that cannot be accomplished without 
programming and extra shields, but many of Cricket designs have 
this feature out of the box. 

Cricket-inspired platforms also have their limitations, such as the 
lack of add-on devices. For advanced students, the possibility of 
adding Ethernet connectivity, wireless communication, playing 
music files, and using SD cards to record information was 
appealing. Arduino/Wiring-inspired designs make it convenient to 
add such functionality, conversely, in Cricket-inspired platforms 
the pins of the microcontroller are pre-assigned for digital/analog 
sensing or outputs, taking considerable more board real estate. A 
project requiring many inputs or outputs will run into limitations. 

2.4 Towards age-appropriate physical 
computing 

This preliminary data and analysis point to a curious conclusion. 
Educators and interaction designers are realizing that the breakout 
hardware model, without add-on boards (motor shield, LCD 
shield) or specialized daughter boards (à la LilyPad), is not as 
effective a design for children. A clear evidence of this argument 
can be seen from the fact that commercial vendors are starting to 
market shields which essentially make an arduino-compatible 
board look exactly like a Cricket board, adding motor drivers and 
independent sensor ports. Some examples are the Babuino board, 
the Robotuino, and the ProtoShield. If this trend truly represents 
recognition that the uses of physical computing are different 

across age groups, we are left with a difficult design conundrum. 
One of the key features of Arduino-inspired designs is their low 
cost – but if we add a shield with motor drivers, a display, and a 
battery board, the cost is considerable, and we end up with a stack 
of 3 or 4 boards, which could be hard to take apart, and prone to 
bad contacts. But, if we were to adopt a Cricket-inspired board, 
advanced students would be limited, and some projects – 
especially with tens of sensors or multiple outputs – would be 
difficult. In addition, students would not have available the 
extensive online support that exists for Arduinos. 

3. GoGo Board, GoGo Shield, GoGoino 
After years working in tens of schools across the world, it became 
clear that, when it comes to introducing students to unfamiliar 
technologies, age-appropriate design matters. Based on this 
principle, we designed a family of devices that could cater to 
different audiences and offer scalability. We hope to generate a 
solution that offers the best of both worlds – the scalability of 
arduino designs with the ease of use of Cricket-based devices. 

Our family of boards begins with the GoGo “Classic,” a low-cost 
PIC-based microcontroller board (Figure 1, left). The board has 
motor drivers, independent sensor connectors, batteries, and an 
I2C bus for add-on devices. We have developed add-ons devices 
for GPS, home automation, PWM, LCD display, sound, and 
wireless communication. 

 

Figure 1. The GoGo Board Classic, and the GoGo Shield. 

The second device is the GoGo Shield (see Figure 1, right). The 
GoGo Shield comprises the most used hardware features in 
educational settings in one single shield – independent motor and 
sensor ports, display, buttons for programming-less mode, and 
easy connection to external autonomous power. We employ the 
widely tested and effective GoGo Board pin standard and make 
them addressable in both an “arduino mode” (setting the pins 
individually using normal arduino code) or a “GoGo Board” mode 
(referring to them as “sensor 1,” “sensor 2,” “motor A,” “motor 
B”). The third component is the GoGoino, a software platform 
which connects Arduinos and GoGo Boards through the I2C 
interface, making the GoGo a controllable shield, or the Arduino 
programmable with Logo. Therefore, young GoGo Board users 
would have a smooth path towards other platforms, and Arduino 
users would also have an alternative when working with younger 
audiences. 

4. TOWARDS SPATIAL COMPUTING 
We strongly believe that the medium for which children express 
their ideas is an essential component that determines the 
possibilities of what they can learn. Even though we believe 
children do learn a great deal about logical thinking and problem 
solving (i.e. debugging) by programming in C or BASIC, Papert 
has shown that there are tremendous opportunities for children to 
explore knowledge domains that were previously thought too 
difficult for children. He not only created a new programming 
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language but also a new kind of relationship between the child 
and the knowledge domain governing the activity being pursued. 
This kind of design still largely missing when using physical 
computing with children, and will show some examples based on 
a new programming environment that we are developing. 

The design of Spatial Computing (SC) originated from our 
observation that children can easily become confused when 
dealing with multiple conditions – visual representations would be 
extremely useful. Consider that we wish to control the direction of 
a motor using two switches: (1) when only switch1 or switch2 are 
pressed the motor turns “this way” or “that way” depending on 
which switch was pressed; (2) when both switches are released, 
the motor should stop; (3) when both switches are pressed, make 
a beep telling the user it does not know what to do. Though this 
may seem simple, writing a computer program to follow these 
conditions is conceptually non-trivial for children regardless of 
the language used. A typical “buggy” program is shown below. 

if switch1 then turn-motor-thisway 
if switch2 then turn-motor-thatway 
if switch1 and switch2 beep-and-stop-motor 
if not switch1 and not switch2 stop-motor 

Many novices would not see the mistake in the above code: 
multiple rules could fire at the same time. When switch1 and 
switch2 are pressed, all the conditions of the first three rules 
would be satisfied, resulting in erratic behavior. SC allows 
students to visually see sensor behaviors and determine the 
appropriate actions. Figure 3 shows how children can draw “hot 
spots” as rectangles right inside a 2D graph. This allows one to 
use his or her understanding of space to define areas of interest 
and associate actions to them. This is a shift in representation that 
could lead to children to do kinds of computation previously 
considered too difficult or abstract. Sipitakiat have used this 
technique to show how secondary school students could work 
with robot balance control, a topic typically considered 
challenging even for engineering students [9]. 

 
Figure 3. Spatial Computing allows children to observe 
multiple sensors and define hot spots for conditions. 

5. CONCLUSION 
The two components of physical computing – hardware and 
software – deserve a greater attention from interaction designers, 
so as to prevent a new ‘qwerty’ phenomenon. We need to 
systematically consider the differences in the existing platforms 
and evaluate their age-appropriateness. The Logo tradition offers 
a useful framework by pointing out how the definition of the level 
of transparency of a technological tool is crucial. Both arduino-
inspired and cricket-inspired platforms are popular and effective 
for different use cases and audiences, we need to keep in mind 
that they were designed for a different level of transparency. 
Students should not be exposed to unnecessarily complex 
electronics concepts unless they are achievable learning goals. 
The same is valid for software. By simply transposing the 
structure of “on-screen” programming to physical computing, we 
might miss an opportunity to make the physicality of sensors and 
actuators an aid for children to understand programming. With 
Spatial Computing, we have observed students’ discovery of new 
ways to program and interact with the physical world. 
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