

QWERTY and The Art of Designing
Microcontrollers for Children

Paulo Blikstein
School of Education and (by courtesy) Computer

Science Department, Stanford University
520 Galvez Mall, Stanford, CA, USA

paulob@stanford.edu

Arnan Sipitakiat
Dept. of Computer Engineering, Faculty of

Engineering, Chiang Mai University
239 Huaykaew Rd., Muang, Chiang Mai, Thailand

arnans@eng.cmu.ac.th

ABSTRACT
Microcontroller-based or physical computing devices have been
used in educational settings for many years for robotics,
environmental sensing, scientific experimentation, and interactive
art. In this paper, we discuss design principles underlying the
several available platforms for physical computing, based on a
historical analysis of the development of these devices, and data
from workshops conducted with students. We evaluate two of the
main frameworks for physical computing (“Cricket” model and
“Breakout” model), discuss affordances of each platform, and
propose a new software and hardware design for microcontroller -
based platforms.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computers Uses in Education

General Terms
Design, Experimentation

Keywords
Education, interaction design, physical computing, robotics.

1. INTRODUCTION
Seymour Papert famously compared the use of the BASIC
programming language for kids and the “qwerty” keyboard layout
[5]. Designed to slow down typers in the early days of mechanical
typewriters, the “qwerty” keyboard became too popular to be
replaced by a better design, even when the original design
rationale was obsolete. In a similar vein, Papert also criticizes the
techno-centric approach in educational technologies which are
often designed from needs and constraints of technologists instead
of students.

This paper initiates a discussion about the design of physical
computing platforms for children. Surprisingly, despite the
popularity of these platforms, there is little research examining
this topic from a usability perspective, taking into account the
history of the development of these platforms. Could the field of
interaction design for children be suffering from a version of the

“qwerty” phenomena – importing popular technologies from other
professional fields without the necessary adaptations for their use
by children? In this paper, we will discuss two prevalent designs
for microcontroller-based devices for children, and argue for a
more careful consideration of their affordances and usability by
young audiences. We will also introduce the idea of Spatial
Computing [9] and how it could constitute an alternative
programming paradigm for physical computing, which could be a
better fit for the projects typically done by students.

The history of the use of microcontrollers in education begins
with probeware (i.e., data acquisition devices), since Bill Walton’s
Laboratory Calculus at EDC in the early 70s [11]. Soon after,
Papert and collaborators first envisioned the use of programmable
robotics with children [4]. However, it was not until the late 80s
and early 90s, when designers started to create products especially
tailored for use in education that educational robotics became
popular (for example, the Handy Board, the Handy Cricket and
the Lego Mindstorms kit, [3, 6, 7]). More recently, the Lego NXT
kit, the Pico Cricket, the GoGo Board [8], and the MIT Tower [2]
have incorporated new features based on advanced sensing and
modular design. Other platforms such as the Phidgets, are also
part of this group, and cutting edge frameworks such as the Handy
Board Blackfin are practically a full-blown computer.

However, another design tradition developed in the early 2000s,
more focused on expandability and exposing the microcontroller’s
connection for use by other circuits, such as Wiring, the CREATE
USB interface (later CUI32), and Basic Stamp, and PICAXE.
Launched in 2005, as a fork of the Wiring platform, the Arduino
design was the culmination of this design, attracting users in
massive numbers, and becoming the de-facto standard in physical
computing. Several platforms have used arduino-inspired designs,
such as the Freeduino, Cortino, Netduino, and Chipino. The
popularization of physical computing brought about by Arduino-
inspired designs has been very positive for the IDC community.
Microcontroller programming has been made affordable,
compatible, multiplatform, and approachable to an unprecedented
number of people, and the synergy in the community has
produced more than 100 add-ons board (shields) and numerous
software libraries.

Despite all the positive aspects of the advent of these platforms,
one aspect needs to be reconsidered by researchers – how much
do the hardware design principles impact how approachable and
usable a platform is for young audiences with little technical
interest or background? What are the consequences for
educational use of the design choices made for the
Arduino/Wiring-inspired platforms, compared to Cricket-like
platforms? And finally, how can we rethink programming for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDC 2011, June 20-23, 2011, Ann Arbor, USA.
Copyright 2011 ACM 978-1-4503-0751-2…$10.00.

IDC 2011 DEMOS 20th-23rd June, Ann Arbor, USA

234

physical computing, and how can we better integrate software and
hardware to make it more approachable for children?

Constructionist researchers have shown since the sixties that not
all programming languages are made equal [4, 5]. Logo has had a
significant impact in K12 education because it was easy to learn
and use by the average child, and designed based on carefully-
crafted, theory-inspired design principles (low threshold, high
ceiling, body sintonicity, etc.). Based on them, Papert and
collaborators made a strong case for why LISP and BASIC were
not good choices, and why there was a need to have a special
language for children. They made the case that media matters, in
other words, the particular affordances and properties of the
constructive building blocks offered to children are determinant
for what they can build, create, and learn. In particular, they made
an important distinction between understanding the inner
workings of a technology and the content that we want children to
learn using them. For example, Papert was interested in Logo as a
way to for children to learn the powerful ideas in mathematics and
computer science (i.e., differential geometry, recursion, etc.) and
not how the computer’s memory was being managed by the
operating system or the transistors were wired inside the
microprocessor. The history of Logo, and more recently of the
Scratch programming environment, shows how this design
principle is crucial and powerful to engage children with
technological tools for learning.

2. HARDWARE MODELS
2.1 The “Cricket” model
One of the first widely used microcontroller-based devices for
children, the MIT Cricket [3], was also the origin of the LEGO
Mindstorms kit and inspired an entire generation of devices. The
Crickets were designed for autonomous use – it executed
programs stored in its internal memory, but it was not designed to
interact with software being used on the computer. Therefore, it
was optimized for autonomy. The Cricket was compact, light,
used infrared to connect with the computer (to enable quick,
wireless reprogramming and resetting), and had a battery pack. In
addition, because of its use in robotics, it had independent
polarized connectors for motors and sensors, motor driver chips,
and resistors for sensors inputs. The LEGO Mindstorms kit, NXT
and WeDo kits, the GoGo Board, and the PicoCricket also
incorporated this same design. In this design, each port has
independent pins for ground, power, and signal, which enables
children to connect devices without any additional circuitry
(breadboard, resistors, etc.), and the external components to be
“off the shelf” sensors, light bulbs, or LEDs without any
additional components. Plugging a sensor or a motor to such
platforms is as simple as plugging a device to an electrical outlet,
and builds on this familiar practice. The battery pack, in most of
these designs, serves as both autonomous power, physical support,
and protection for the exposed circuitry underneath the board. In
short, they were designed to be low-threshold, mobile,
autonomous, sturdy devices, able to survive daily use by children.

The Cricket and the GoGo Board platforms also included support
for add-on boards, using a custom bus (Cricket) or the industry-
standard I2C architecture (GoGo Board). Finally, the GoGo Board
brought some other unique contributions. The first was the
tethered mode, with which users could leave the board connected
to the computer through a USB cable, and bring the sensor data in
real time to the computer, communicating with several software
packages such as Microworlds, Scratch, Microsoft Visual Studio,

Adobe Flash, and NetLogo. The second was the fact that it was
open-source, easy to build with simple tools, and low-cost.
Cricket-inspired designs have been refined for more than a decade
to enable children to quickly build robotics and physical
computing projects – the latest generation of devices, such as
PicoCrickets, offers a true plug-and-play experience.

2.2 The “Breakout” model
Arduino-like platforms were originally created by professional
interaction designers for college-level physical computing
projects. Born at the Ivrea Institute in Italy in 2005, as a fork of
the Wiring and the Processing projects, the design principles were
to have a simple, low-cost and extensible platform. The Arduino
architecture achieves its goal of expandability and flexibility by
exposing the microcontrollers’ pins and capabilities to the user.
This “breakout” design, also present in architectures such as the
Propeller and Basic Stamp, eliminates one level of abstraction by
foregrounding the microcontroller’s internal architecture. The pins
are reconfigurable and not assigned to particular functions. The
advantages of such design decision are dramatic: for example, it’s
easy to move from an Arduino prototype to a custom printed
circuit board by adding the microcontroller and some components
to a new board, keeping the pin assignments and code. It is also a
very flexible environment for programming, since pins can be
dynamically allocated to different purposes. Also, many
components are off loaded to the breadboard, such as resistors and
motor drivers, reducing cost and component count.

2.3 The Cricket vs. Breakout design
Both platforms were designed for different audiences and use
cases, but the literature is scarce in contrasting them. The
comparison is important in the context of optimizing design
decisions for use with young audiences, especially in middle
school, when children have a limited understanding of basic
concepts in physics and electronics. We present relative
advantages and shortcomings in Table 1. With [Ed], we indicated
items that are commonly needed in educational environments, and
with [Ex], items commonly needed by experts. This classification
is based on our experience working with both groups in robotics
and physical computing workshops for novices [8, 9, 10].

Table 1. Comparison between Cricket vs. Breakout designs

Item Cricket design Breakout designs
Learning curve Easy More difficult
Programming [Ed] Logo-like C-like
External components
[Ed] None, mostly Many (resistors,

etc.)
Autonomy [Ed] Out of the box No, need shields
Robustness of
connections [Ed]

High
(polarized)

Low (can easily
come apart)

Auto-ID of sensors Some designs No
Motor drivers [Ed] Yes No, need shields
Batteries [Ed] Yes No, need shields
Independent ports [Ed] Yes No, need shields
Expandability [Ex] Low High
Number of ports [Ex] Low High
Reusable MCU [Ex] No Yes
Complex programs [Ex] Mostly no Yes
Libraries [Ex] Some Many
One conclusion of this comparison is that some of the crucial
requirements for educational use are not present in the breakout-
inspired boards, conversely, many advanced features are indeed

IDC 2011 DEMOS 20th-23rd June, Ann Arbor, USA

235

present, but absent from most of the Cricket-inspired platforms.
Some successful and ingenious cross-over designs exist, such as
the LilyPad Arduino [1], which has custom circuit boards for
LEDs, sensors, and motors already supplied with soldered
resistors and extra components, making its use much more
approachable by novices.

We have run robotics workshops for several years in a variety of
countries and socioeconomic settings. More recently, we started to
run studies in which students use both “cricket” and “breakout”
designs, in the context of physical computing classes for
middle/high school, undergraduates, and non-technical graduate
students. One consistent observation when introducing robotics to
young audiences is that their knowledge of electricity and physics
is extremely basic. We repeatedly found that high-school and non-
technical undergraduate students could not understand several
basic concepts, for example: (1) the difference between analog,
PWM, and digital pins, (2) what abbreviations such as “GND,”
“PWM” and “Vcc” meant, (3) the difference between 5V and
3.3V, (4) the need for of “pull-up” and “pull-down,” resistors (5)
voltage/current dividers. Understanding the architecture of a
breadboard was also challenging. The overhead involved in
explaining those technical details was significant, and generated
considerable anxiety in novice users, who reported having used
the breakout-based boards without understanding the rationale of
the physical connections. Indeed, just like writing a BASIC
program, many of those technical issues are not intrinsically
important for the task of building physical computing devices.

A second problem was that more often than not students wanted
to build autonomous robots and cars, and therefore needed a
power source. Usually they would connect a 9V battery to a
power jack and tape it to the board, which would often come
apart. Children often want to drive and reverse motors using their
boards, which required a separate shield. Finally, we found that
offering simple autonomous sensing without programming is a
very effective tool to introduce robotics and sensors. In breakout-
inspired platforms, that cannot be accomplished without
programming and extra shields, but many of Cricket designs have
this feature out of the box.

Cricket-inspired platforms also have their limitations, such as the
lack of add-on devices. For advanced students, the possibility of
adding Ethernet connectivity, wireless communication, playing
music files, and using SD cards to record information was
appealing. Arduino/Wiring-inspired designs make it convenient to
add such functionality, conversely, in Cricket-inspired platforms
the pins of the microcontroller are pre-assigned for digital/analog
sensing or outputs, taking considerable more board real estate. A
project requiring many inputs or outputs will run into limitations.

2.4 Towards age-appropriate physical
computing

This preliminary data and analysis point to a curious conclusion.
Educators and interaction designers are realizing that the breakout
hardware model, without add-on boards (motor shield, LCD
shield) or specialized daughter boards (à la LilyPad), is not as
effective a design for children. A clear evidence of this argument
can be seen from the fact that commercial vendors are starting to
market shields which essentially make an arduino-compatible
board look exactly like a Cricket board, adding motor drivers and
independent sensor ports. Some examples are the Babuino board,
the Robotuino, and the ProtoShield. If this trend truly represents
recognition that the uses of physical computing are different

across age groups, we are left with a difficult design conundrum.
One of the key features of Arduino-inspired designs is their low
cost – but if we add a shield with motor drivers, a display, and a
battery board, the cost is considerable, and we end up with a stack
of 3 or 4 boards, which could be hard to take apart, and prone to
bad contacts. But, if we were to adopt a Cricket-inspired board,
advanced students would be limited, and some projects –
especially with tens of sensors or multiple outputs – would be
difficult. In addition, students would not have available the
extensive online support that exists for Arduinos.

3. GoGo Board, GoGo Shield, GoGoino
After years working in tens of schools across the world, it became
clear that, when it comes to introducing students to unfamiliar
technologies, age-appropriate design matters. Based on this
principle, we designed a family of devices that could cater to
different audiences and offer scalability. We hope to generate a
solution that offers the best of both worlds – the scalability of
arduino designs with the ease of use of Cricket-based devices.

Our family of boards begins with the GoGo “Classic,” a low-cost
PIC-based microcontroller board (Figure 1, left). The board has
motor drivers, independent sensor connectors, batteries, and an
I2C bus for add-on devices. We have developed add-ons devices
for GPS, home automation, PWM, LCD display, sound, and
wireless communication.

Figure 1. The GoGo Board Classic, and the GoGo Shield.

The second device is the GoGo Shield (see Figure 1, right). The
GoGo Shield comprises the most used hardware features in
educational settings in one single shield – independent motor and
sensor ports, display, buttons for programming-less mode, and
easy connection to external autonomous power. We employ the
widely tested and effective GoGo Board pin standard and make
them addressable in both an “arduino mode” (setting the pins
individually using normal arduino code) or a “GoGo Board” mode
(referring to them as “sensor 1,” “sensor 2,” “motor A,” “motor
B”). The third component is the GoGoino, a software platform
which connects Arduinos and GoGo Boards through the I2C
interface, making the GoGo a controllable shield, or the Arduino
programmable with Logo. Therefore, young GoGo Board users
would have a smooth path towards other platforms, and Arduino
users would also have an alternative when working with younger
audiences.

4. TOWARDS SPATIAL COMPUTING
We strongly believe that the medium for which children express
their ideas is an essential component that determines the
possibilities of what they can learn. Even though we believe
children do learn a great deal about logical thinking and problem
solving (i.e. debugging) by programming in C or BASIC, Papert
has shown that there are tremendous opportunities for children to
explore knowledge domains that were previously thought too
difficult for children. He not only created a new programming

IDC 2011 DEMOS 20th-23rd June, Ann Arbor, USA

236

language but also a new kind of relationship between the child
and the knowledge domain governing the activity being pursued.
This kind of design still largely missing when using physical
computing with children, and will show some examples based on
a new programming environment that we are developing.

The design of Spatial Computing (SC) originated from our
observation that children can easily become confused when
dealing with multiple conditions – visual representations would be
extremely useful. Consider that we wish to control the direction of
a motor using two switches: (1) when only switch1 or switch2 are
pressed the motor turns “this way” or “that way” depending on
which switch was pressed; (2) when both switches are released,
the motor should stop; (3) when both switches are pressed, make
a beep telling the user it does not know what to do. Though this
may seem simple, writing a computer program to follow these
conditions is conceptually non-trivial for children regardless of
the language used. A typical “buggy” program is shown below.

if switch1 then turn-motor-thisway
if switch2 then turn-motor-thatway
if switch1 and switch2 beep-and-stop-motor
if not switch1 and not switch2 stop-motor

Many novices would not see the mistake in the above code:
multiple rules could fire at the same time. When switch1 and
switch2 are pressed, all the conditions of the first three rules
would be satisfied, resulting in erratic behavior. SC allows
students to visually see sensor behaviors and determine the
appropriate actions. Figure 3 shows how children can draw “hot
spots” as rectangles right inside a 2D graph. This allows one to
use his or her understanding of space to define areas of interest
and associate actions to them. This is a shift in representation that
could lead to children to do kinds of computation previously
considered too difficult or abstract. Sipitakiat have used this
technique to show how secondary school students could work
with robot balance control, a topic typically considered
challenging even for engineering students [9].

Figure 3. Spatial Computing allows children to observe
multiple sensors and define hot spots for conditions.

5. CONCLUSION
The two components of physical computing – hardware and
software – deserve a greater attention from interaction designers,
so as to prevent a new ‘qwerty’ phenomenon. We need to
systematically consider the differences in the existing platforms
and evaluate their age-appropriateness. The Logo tradition offers
a useful framework by pointing out how the definition of the level
of transparency of a technological tool is crucial. Both arduino-
inspired and cricket-inspired platforms are popular and effective
for different use cases and audiences, we need to keep in mind
that they were designed for a different level of transparency.
Students should not be exposed to unnecessarily complex
electronics concepts unless they are achievable learning goals.
The same is valid for software. By simply transposing the
structure of “on-screen” programming to physical computing, we
might miss an opportunity to make the physicality of sensors and
actuators an aid for children to understand programming. With
Spatial Computing, we have observed students’ discovery of new
ways to program and interact with the physical world.

6. REFERENCES
[1] Buechley, L. 2008. The LilyPad Arduino: Toward wearable

engineering for everyone. In Proc. Pervasive Computing,
IEEE.

[2] Lyon, C. 2003. Encouraging Innovation by Engineering the
Learning Curve. Cambridge, MA: Master’s Thesis, MIT.

[3] Martin F., and Resnick M. 1993. LEGO/Logo and Electronic
Bricks: Creating a Scienceland for Children, in Advanced
Educational Technologies for Mathematics and Science.
Springer.

[4] Papert, S. 1971. Teaching children thinking. MIT Artificial
Laboratory Memo #247, MIT, Cambridge.

[5] Papert, S. 1980. Mindstorms: children, computers, and
powerful ideas. New York: Basic Books.

[6] Resnick, M., Berg, R., & Eisenberg, M. 2000. Beyond Black
Boxes: Bringing Transparency and Aesthetics Back to
Scientific Investigation, Journal of the Learning Sciences, 9
(1), pp. 7-30.

[7] Sargent, R. 1995. The Programmable LEGO Brick:
Ubiquitous Computing for Kids. Cambridge, MA: Media
Laboratory Master’s Thesis, MIT.

[8] Sipitakiat, A., Blikstein, P., & Cavallo, D. 2004. Moving
towards highly available computational tools in learning
environments. In Proceedings of the International
Conference of the Learning Sciences, Los Angeles, CA,
USA.

[9] Sipitakiat, A., Cavallo, D. 2008. Giving the Head a Hand:
Constructing a Microworld to Build Relationships with Ideas
in Balance Control, In Proceedings of the International
Conference of the Learning Sciences, Netherlands.

[10] Sipitakiat, A., & Blikstein, P. 2010. Think globally, build
locally: a technological platform for low-cost, open-source,
locally-assembled programmable bricks for education. In
Proceedings of the Conference on Tangible, Embedded, and
Embodied Interaction, Cambridge, USA.

[11] Tinker, R. 2000. A History of Probeware. Retrieved from
http://www.concord.org/publications/detail.

IDC 2011 DEMOS 20th-23rd June, Ann Arbor, USA

237

