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Abstract  

In this paper we describe a pilot study of an approach to STEM inquiry learning called Bifocal 
Modelling (Blikstein, 2010) with a group of high school students studying bacterial growth. 
Students grew and measured real bacteria, and then collaboratively designed a conceptual 
agent-based model of bacteria. Observations and student notes suggest that the activity helped 
students demonstrate their knowledge of bacterial growth by formalizing it from a list of 
unorganized facts into an accurate pseudo-computational model. In the process of completing 
their task, they also critically reflected on the assumptions built into the modelling activity itself, 
and demonstrated familiarity with some core principles of complex systems. 
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Introduction  
The use of computational models of scientific phenomena has become an increasingly viable 
option for classroom science learning as technology and accessibility improve. There is a large 
body of literature on the use of those virtual models to display data, to simulate complex 
phenomena, and to permit student experimentation in domains that might be costly, impractical, 
or dangerous (Jaakkola & Nurmi, 2008, Finkelstein et al., 2005, Klahr, Triona & Williams, 2007, 
Zacharia 2008a,b, Resnick & Wilensky, 1998, PhET, 2011). The potential of a combination of 
virtual and physical models for science learning has been documented for a wide range of ages 
and domains. For instance, Liu and collaborators (2006) explored high school students' 
understanding of chemistry concepts. They found that the combination of a virtual model and 
hands-on lab activity was more effective than either alone, balanced for time-on-task, in 
promoting students' conceptual understanding of the gas laws. Recent studies have also 
investigated the importance of the sequencing of physical and virtual model activities on student 
learning, with the general result that better learning resulted from the virtual experiment 
following a physical one (Gire et al 2010, Smith et al. 2010).  
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However, the literature has focused entirely on pre-designed physical and computer models. Pre-
designed models can scaffold and direct students to attend to relevant problem information, but 
they fail to give students opportunities to evaluate the assumptions and limitations of the models 
themselves (Papert, 1980). Creating and critically evaluating models is an important part of 
scientific practice, and is being increasingly recognized as a valued educational goal (Levy & 
Wilensky, 2008, Blikstein 2010). The literature has also under-explored the potential for deeper 
support of student comparison between the physical and virtual models. Smith and collaborators 
(2010) noted that scaffolds in the virtual model, or direct data-sharing between virtual and 
physical, could help students to see the similarities and differences between model and reality.  In 
this paper, we present a pilot study that demonstrates a potential way to address both of these 
concerns. Using a type of scientific inquiry activity called Bifocal Modeling, high school students 
built virtual and physical models of bacterial growth in order to learn content knowledge, 
computational thinking, and critical meta-modeling skills. Our main research questions were: (1) 
how do students’ understand the mismatch between idealized and physical models?, and (2) how 
do they critically evaluate their choice of variables and phenomenal factors to include (or not) in 
their own theoretical models to iteratively match it to the real-world data? 

Research setting  
Bifocal Modeling (BM) (Blikstein 2007, 2010) is an approach to inquiry-driven science 
laboratory learning that challenges students to build and relate in real time physical and virtual 
models. In these “hybrid-reality” activities, students explore a scientific phenomenon such as heat 
diffusion, the properties of gases, or wave propagation by designing and building their own 
physical model and collecting data using embedded sensors. In parallel, they build their own 
virtual model of the same phenomenon, and can compare the behaviour of the virtual model and 
the physical model in real-time (figure 1). The most common software to implement virtual 
models has been NetLogo (Wilensky, 1999), a free and open-source environment for agent-based 
modeling. A NetLogo model typically consists of a set of autonomous agents (such as gas 
particles or people at a party) moving through a world and interacting to produce emergent 
outcomes. Students define the variables held by the agents and the world, and specify a set of 
rules for agent-level behaviour, such as “if two gas particles collide, they exchange energy, and 
bounce off each other.” Their goal is to build a model whose behaviour matches the data they 
collected. This challenge encourages students to refine their content knowledge as they iteratively 
improve their virtual models, and to question the validity of their own representational choices. 
For example, a student trying to match a computer model of Newtonian motion to a real 
experiment may be forced to confront the existence of a missing friction coefficient, to determine 
how to measure motion using a given set of sensors, or even whether to model an object as a 
single unit or as a collection of atomic particles. In this way, BM can serve as a method to teach 
scientific content, evaluative modeling skills, and science process skills such as scientific 
equipment use and programming. 

The growth of bacteria has been an exciting object of study for centuries. We chose bacteria as a 
subject because their simple cellular structure and quick reproduction rate allow them to be used 
to address many biological questions as model systems.  Bacteria can also be used to demonstrate 
exponential growth, which can be used to model more complex ecological dynamics.  
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Figure 1. Bifocal Modeling platform, linking a physical experiment and a computer simulation in real 

time. 

Methods 
The authors conducted a pilot study in the form of an after-school workshop for four high school 
students, all female and ranging from 9th to 11th grade. Two had previously learned about bacteria 
in class, but knew nothing about the growth pattern of bacteria and had never grown real bacteria. 
The workshop was conducted in a laboratory setting and lasted for a total of about five hours, 
split across three afternoon sessions. Even though Bifocal Modeling activities typically take 20+ 
hours, for this study we attempted to fit the activity within a format that would be more realistic 
for a school implementation in a biology unit. Therefore, we took some design decisions to 
shorten the activity but still keeping its core design principles. The first change was to shorten the 
data collection phase by offering students the opportunity to create their own experiments 
(growing bacteria), but also providing some previously collected data (movies of bacteria 
growing). The second decision, which emerged during the activity (Design-Based research, 
Confrey, 2005; Edelson, 2002), was to teach only the conceptual principles of the computational 
modeling language, since learning a programming language in a 3-hour period would be 
challenging for most students. Therefore, we adopted a version of “paper modeling” (Blikstein,, 
2009, under review) and students collectively built agent-based rules of the computer model on a 
whiteboard, going through their pseudo-code and animating it “frame by frame.” 

During the first session, the students were tasked with growing real bacteria using supplied tools. 
They collected bacteria samples from different places around their environment (e.g. doorknob, 
touch screen, hand, and keyboard), and each student prepared a Petri dish with agar and applied 
the bacteria to the dish. When finished, they installed a provided time-lapse camera that captured 
images of the dishes every 30 minutes for five days. The images were automatically compiled 
into a video that showed the students the growth pattern of the bacteria. For this particular design, 
we condensed the physical data-collection portion by also providing students with previously-
captured movies of bacteria growth and a growth curve, so that they could start the modeling task 
earlier. We explained that the growth curve was what they could expect to see in their own 
bacteria cultures, and challenged them to learn about the growth curve in order to make a model 
of bacteria that could reproduce it and fit the curve. 

During the second session, the students were grouped into two pairs and each pair used a 
computer to do web research on the bacterial growth curve. As they searched, they took notes on 
information they thought was relevant. The authors were present to remind the students that their 
goal was to understand what causes the characteristic growth curve. An acceptable answer would 
be that a typical growth curve contains several distinct phases as the bacteria adapt to their new 
environment, consume food and release waste, rapidly multiply, and eventually die out from their 
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own waste products and lack of food. 

For the third and final session, the authors intended to have the students use the NetLogo 
simulation environment to make a virtual model. But due to the challenge of learning NetLogo 
programming in a short period of time (see above), the authors instead conducted a variation of 
“paper modeling” (Blikstein, under review) in which students collectively designed and ran an 
agent-based model of bacterial growth on a whiteboard. This required articulating the variables in 
the model (such as bacteria count, food, waste, and moisture), and agent-level rules such as “each 
bacterium subtracts 2 units of food from its location and emits 1 waste.” 

The students would “run the model” by enacting its rules on the board to progress the model by a 
single time step at a time, and then stop to add or change rules and variables. The authors 
scaffolded the modeling session with minimal questions, such as “What is still missing from our 
model?” and “How can you express the idea of eating food in terms of the variables we have?” 
The resulting model was “executed” on the whiteboard for enough time steps to give students a 
sense of the growth curve, and simulated a colony of bacteria that moves, consumes food and 
moisture, excretes waste, reproduces, and can die from starvation or poisoning from toxic waste. 
We are well aware of the differences between computational and non-computational media 
(diSessa, 2000; Papert, 1980), but for the research goals of this study, this adaptation was 
successful at enacting the initial stages of the computational modeling process, which was enough 
for our specific research questions. In fact, after the whiteboard activity, students did interact with 
actual computer models, but that data is not reported here since our focus in on the early 
exploration of agent rules and real-world data. 

Students were given two open-ended questionnaires about bacteria and the growth curve - once 
before and once after the entire session. They were also videotaped during all activities, their 
computer usage was documented with the Camtasia screen-capture software, the researchers took 
field notes, and all of their notes and sketches in all three sessions were preserved. 

Data and Discussion 
This section will consist in a commented narrative of several classroom episodes centered around 
the perceived and hypothesized affordances of BM, namely: (a) resolving model mismatch, (b) 
converging on appropriate variables, (c) critically evaluating the assumptions of models, and (d) 
translating between micro and macro perspectives. 

Iteratively improving the virtual model to resolve mismatch  
Overall, the group’s method was to “run” their whiteboard virtual model in order to see how the 
bacteria grew, to compare the results to their goal of the growth curve from the physical data, and 
to resolve the perceived differences between the two by adding rules and variables to the virtual 
model. They repeated this process a total of four times in the 1.5 hours of the session, developing 
an increasingly accurate model in the process (figure 2). 

For example, a student observed at one point after “running” the virtual model that their growth 
curve was increasing exponentially from the start. She noted that this was not right, because the 
real growth curve had an initial flat “lag phase” before beginning to grow. After a moment’s 
reflection, she remembered that this was because real bacteria have an initial phase of settling 
into a new environment before multiplying. She said “We need to make a rule that it takes time 
before the bacteria grow.” Another student chimed in, saying that this would have to be different 
from a maturation period for individual bacteria, because it would apply only to the first bacteria 
on the dish. After more discussion about how to code the lag phase in their system, they came up 
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with the following rule:  “If a bacterium is in the first generation, it has to wait two time steps 
before reproducing.” Upon running the model again, the students could see from the resulting 
curve that they had successfully created the lag phase. The students went through a similar 
process to add all of the variables in their model. 

 

 
 

 

 

 

 

 
 

 

Converging on appropriate variables 
When the students were searching the web for information about bacteria, they collected and 
wrote down a great deal of information that was not necessary for the modeling task they were 
given. For example, some students noted that bacteria are prokaryotes, eat many types of human 
food, and live in a range of conditions. However, during the whiteboard virtual modeling session, 
the students only included variables that were necessary to define the shape of the growth curve - 
food/moisture, waste, and bacteria health. Global variables like temperature and oxygen affect 
bacterial growth, but the dynamics of the curve assume that these global variables are constant or 
the variations are too small. The fact that the students left these variables out without prompting 
suggests that they implicitly understood this instance of a controlled variable.  

Students also made decisions regarding the granularity with which to describe variables. One 
student noted multiple types of bacteria nutrients in her web research, but went along with the 
group in representing food as a single variable of just one type. When asked about this issue, she 
replied that “I don’t need to be that specific for this model.” 

Critically evaluating the assumptions of models 
In addition to learning about the relevant variables for modeling bacterial growth, the students in 
the Bifocal Modeling workshop spontaneously reflected on the underlying assumptions of their 
models themselves - in this case, their representations of space and time. Space is represented in 
NetLogo as a grid of square “patches”, units of space that can possess variables like location or 
food concentration. This patchwork representation of space was explained to the students at the 
start of the whiteboard modeling session, but at the time of introduction it was only relevant as a 
way to explain how to represent environmental variables like food. However, as the session 

- add bacteria, food, moisture, temperature 

- add rule: bacteria move around randomly 

- RUN MODEL: results were a flat growth curve 

- add food rule: bacteria absorb food and moisture 

- add waste rule: bacteria release waste 

- add reproduction 

- RUN MODEL: results are exponential growth and no death 

- add death rule: if bacteria don’t get food/moisture, they die 

- RUN MODEL: results were exponential growth and then death 

- add lag phase rule: first generation takes longer to multiply 

Figure 2: A chronological list of the additions the students made to the model, and the
instances in which they ran it. The results of each run prompted a subsequent rule addition
that made the model more accurate. 
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progressed the students noticed that their bacteria were scattered randomly across the surface in 
their model, and filled the entire surface uniformly as they multiplied. In contrast, the real 
bacteria that they grew formed small circular spots. How could they explain the difference? A 
discussion on how far bacteria can move quickly led to the question of the size of whole grid 
square itself. As one student put it, “This square could be a whole dish, or it could be just a tiny 
spot in the real Petri dish… if we were looking through a microscope, zooming in, they [the 
bacteria] will move much more. “ At the end of their discussion, they decided that it was up to 
them to define the size of the virtual world they designed. 

Similarly, time in NetLogo and the whiteboard model is represented as a series of discrete steps 
called “ticks”. While discussing the proper time delay for the lag phase, one student realized that 
they had no agreed conversion between ticks and real time. She asked, “Do bacteria get food and 
moisture each minute? Each hour? Each day?  Right now we are just doing this with ticks... how 
can we translate the tick into real time?” At the end of another discussion about the time scale of 
bacteria growth in the real world and in NetLogo program, the students decided that if bacteria 
can multiply every 20 minutes, they will agree that one tick in the virtual world equalled 20 
minutes in the physical world. Though they did not entirely resolve their questions about 
representing time and space in their model, the students were asking the “right” questions; that is, 
they were asking questions about the assumptions that models make about the world, which are at 
the heart of scientific critical thinking (Blikstein 2007). 

Finally, as a brief note, the whiteboard modeling activity demonstrated the usefulness of 
computer models to the students. Once the whiteboard model was slightly complex, it became 
virtually impossible for a person to track the variable values of all of the bacteria and patches. 
One student noted, “…it’s going to be really hard to imagine this in our heads. This is definitely 
where a computer model is relevant.” 

Translating between micro and macro perspectives 

A final theme that arose during the modeling session was the continual switching of perspectives, 
from the rules for an individual bacterium to the emergent behaviour of its entire colony. The 
literature on complex systems education suggests that people find it difficult to move in either 
direction between macro and micro perspectives - either inferring the emergent result of a micro-
level change to a system, or predicting the micro level changes that could cause a given macro-
level result (Wilensky & Reisman, 2006; Wilkerson-Jerde & Wilensky, 2011, Blikstein, under 
review). Complex system dynamics are also typically taught only in highly advanced math and 
science settings. However, the literature also suggests that properly designed activities can help 
people to grasp complex systems concepts much more easily (Blikstein, 2007, 2010). The 
iterative process of modeling that the students went through can be seen as a process of writing 
rules at the level of the individual bacterium in order to create emergent outcomes at the level of 
the colony. With no prior academic knowledge of agent-based modeling or complex systems, the 
students in this study described and manipulated a complex system at two levels. While BM is 
not inherently bound to a complex-systems framework, the process of modeling a phenomenon 
may be an effective way to intellectually engage with the dynamics of complex systems. 

Conclusions and next steps 
Instructed to make a model that recreates the bacterial growth curve, the students used their 
previously-learned knowledge about the curve and the physical appearance of the bacteria as a 
benchmark for what their model should produce. The clash between the virtual and real models 
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defined a clear goal for the students of recreating the bacterial growth curve. In the process of this 
reconstruction, we claim that the students demonstrated learning in three areas - content 
knowledge about bacterial growth, critical evaluative skills for scientific models, and an 
understanding of the concepts of emergence and exponential growth in complex systems. Future 
work will continue to develop BM as a platform for real-time linking of physical and virtual 
models, and for real-time collaborative programming with computational media.  
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