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ABSTRACT 
Computer modeling has been successfully used in a large number 
of distinct scientific fields, transforming scientists’ practice. 
Educational researchers have come to realize its potential for 
learning. Studies have suggested that students are able to 
understand concepts above their expected grade level after 
interacting with curricula that employ multi-agent simulation. 
However, most simulations are ‘on-screen’, without connection to 
the physical world. Therefore, real-time model validation is 
challenging with extant modeling platforms. I have designed a 
technological platform to enable students to connect computer 
models and sensors in real time, to validate and refine their 
models using real-world data. In this paper, I will focus on both 
technical and pedagogical aspects, describing pilot studies that 
suggest a real-to-virtual reciprocity catalyzing further inquiry 
toward deeper understanding of scientific phenomena. 

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computers Uses in Education 

General Terms 
Design, Experimentation.  

Keywords 
Computer modeling, sensing, constructivism, physical computing, 
bifocal modeling. 

1. INTRODUCTION  
Fifteen years ago, few would have predicted that children would 
be doing advanced robotics in middle-school. Indeed, since the 
seminal work by Papert, Martin, and Resnick [16, 19], the 
creation of the Lego Mindstorms platform, and the appearance of 
robotics competitions across the country, robotics has become a 
common activity in public and private schools. However, one 
crucial component of the revolution predicted by its proponents is 
still far away – its integration with the normal school curriculum. 
Robotics activities are often too focused on competitions and 
prescribed, standardized “challenges,” and ended up being 
segregated to after school programs. In most schools, robotics 

teachers conduct activities regardless of what happens in science 
or math classrooms. 

At the same time, science classrooms and laboratories are not well 
suited to support students for authentic scientific inquiry, 
developing and investigating their own scientific hypotheses and 
projects. For example, a student examining an acid-base reaction 
in a laboratory might identify the chemical elements involved and 
even hypothesize as to their proportions and concentrations, but 
the investigation cannot dive deep into chemical mechanisms. 
Later, in the classroom, he will learn about chemical equations 
and theories which bear little resemblance, in terms of scale and 
mechanism, to the phenomenon observed in the laboratory. 
Bifocal Modeling [1, 2, 5, 6] is a framework to link these 
disconnected types of activities and environments (computational 
manipulatives/sensors, science laboratories, and theoretical 
content in science), providing continuity between observation, 
physical construction of artifacts, and model-building. As this 
modeling platform enables seamless integration of the 
theoretical/computational models and the physical world, 
allowing modelers to focus simultaneously on their ‘on-‘ and ‘off-
screen’ models, I termed it bifocal modeling. 

When building a bifocal model, students have three main tasks. 
First, they build a computer model of the phenomenon using 
various computer modeling platforms (in particular, I use 
NetLogo [22] in my studies). This model should encapsulate 
students’ hypotheses about a given scientific phenomenon. 
Second, students use electronic sensors and low-cost analog-to-
digital interfaces, such as the GoGo Board [21], to build their own 
sensor-equipped “science lab” to collect data about the 
phenomenon. Finally, students run both systems connected in real 
time to validate, refine, and debug their hypotheses using real-
world data. The computer screen becomes a display for the 
computer model, which is a proceduralization, through 
programming, of equations, text, or other representations of 
scientific content, and the actual phenomenon, which is 
discretized and measured by means of sensors and other 
laboratory apparatus (see Figures 1-3, for models of an acid-base 
reaction, Gas Laws, and heat transfer). Because the computer 
models are carefully constructed to imitate the phenomenon’s 
visual language, the bifocal methodology minimizes interpretive 
challenges. That is, the seen and the hypothesized are displayed 
such that their perceptual differences are backgrounded and, 
therefore, their procedural differences are more likely to be 
revealed. By thus utilizing the power of computation and 
representation, bifocal modeling constitutes a multi-disciplinary 
research tool that offloads aspects of both the interpretive and 
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menial burden of scientific practice, freeing cognitive, discursive, 
and material resources that can thus be allocated toward validation 
of the hypotheses. 

 
Figure 1. A model of an acid-base reaction, with the physical 

apparatus (left) and the computer model (right), which 
compares the pH ‘measured’ in the two models and exhibits 

the values in real-time for easy comparison. 

Figure 2. A model of a gas laws model, with the physical 
sensor-enabled syringe (right) and the computer model (left). 
When students press the physical syringe, the virtual syringe 

moves accordingly, and the students can compare the pressure 
measured in both. 

Figure 3. A model of heat transfer, with the physical model 
with multiple temperature sensors and hexagonal water 

receptacles (left), and the computer interface showing a side-
by-side real-time visualization of the physical and the 

computer data (right). 

Investigating novel ways to use computational representations and 
tools is timely because the use of computational models of 
scientific phenomena has become an increasingly viable option 
for classroom science learning as technology and accessibility 
improve. There is a large body of literature on the use of virtual 
models to display data, simulate complex phenomena, and permit 
student experimentation in domains that might be costly, 
impractical, or dangerous [9, 11, 12, 17, 18]. The potential of a 
combination of virtual and physical models to aid science learning 
has been documented for a wide range of ages and domains. For 
instance, Liu and collaborators [14] explored high school 
students’ understanding of chemistry concepts. They found that 
the combination of a virtual model and hands-on lab activity was 
more effective than either alone, balanced for time-on-task, in 

promoting students' conceptual understanding of the gas laws. 
Recent studies have also investigated the importance of the 
sequencing of physical and virtual model activities on student 
learning, with the general result that better learning resulted from 
the virtual experiment following a physical one [10, 20].  

However, there are two under researched areas. First, the literature 
has focused almost entirely on pre-designed physical and 
computer models. Pre-designed models can scaffold and direct 
students to attend to relevant problem information, but they fail to 
give students opportunities to evaluate the assumptions and 
limitations of the models themselves [16]. Creating and critically 
evaluating models is an important part of scientific practice, and is 
being increasingly recognized as a valued educational goal [3, 4, 
10]. Second, the literature has also under-explored the potential 
for deeper support of student comparison between the physical 
and virtual models. Smith and collaborators [20] noted that 
scaffolds in the virtual model, or direct data-sharing between 
virtual and physical, could help students to see the similarities and 
differences between model and reality. However, there has been 
no work studying physical and computer models connected in 
real-time. 

In this paper, I present pilot studies that demonstrate a 
pedagogical framework to augment the comparison between real 
and ideal systems as an avenue to deeper understanding of 
scientific phenomena. In the first study, high school students built 
virtual and physical models of bacterial growth in order to learn 
content knowledge, computational thinking, and critical meta-
modeling skills. Our main research questions were: (1) how do 
students’ understand the mismatch between idealized virtual and 
physical models?, and (2) how do they decide which variables and 
phenomenal factors are necessary to include  in their own 
theoretical models to match the real-world data? In the second set 
of studies, I examined different models of implementation of 
bifocal modeling in classrooms, from more open-ended themes to 
more constricted tasks. I investigated many different formats of 
implementation in which I varied the topic (Biology or Physics) 
and the amount of model construction (students building their 
own models versus students being presented with ready-made 
models). 

2. RESEARCH SETTING  
In Bifocal Modeling (BM) activities, the most common software 
to implement virtual experiments has been NetLogo [22], a free 
and open-source environment for agent-based modeling. A 
NetLogo model typically consists of a set of autonomous agents 
(such as gas particles or people at a party) moving through a 
world and interacting to produce emergent outcomes. Students 
define the variables held by the agents and the world and specify a 
set of rules for agent-level behavior, such as “if two gas particles 
collide, they exchange energy and bounce off each other.” Their 
goal is to build a model whose behavior matches the data they 
collected. This challenge encourages students to refine their 
content knowledge as they iteratively improve their virtual 
models, and to question the validity of their own representational 
choices. A student, for instance, trying to match a computer model 
of Newtonian motion and a real experiment may be forced to 
confront the existence of a missing friction coefficient, to 
determine how to measure motion using a given set of sensors, or 
even whether to model an object as a single unit or as a collection 
of atomic particles. In this way, BM can serve as a method to 
learn scientific content, modeling skills, and scientific research 
methods. 



 
 
 
 

As a BM activity comprises many different tools, techniques, and 
classroom facilitation, there are multiple possible formats and 
phases for its implementation. These are the four major 
components of a BM activity, which could be present or ordered 
in different ways: 

A. Research - In each study, students were encouraged to use 
external learning resources, such as the web or books, to gather 
initial information about the phenomenon. The format of this 
phase was dependent on the context of the study and students’ 
previous knowledge about the phenomenon. The general goal of 
this phase was to give students baseline information about the 
normative representations of the phenomenon under scrutiny. 

B. Design - Within a guiding theme (e.g., gas laws), students 
select variables that they want to explore, make hypotheses about 
what they will observe, and design physical and virtual models 
that can potentially answer those hypotheses. In designing the 
virtual model, students typically define the possible variables, and 
conceptualize micro-rules or equations to describe the 
phenomenon. 

C. Build (program or develop)- Students construct physical 
models (e.g. a ball and ramp, a Petri dish filled with agar and 
bacteria, a system with interconnected beakers with different 
substances) and virtual models (e.g. a physics model of gravity 
and friction, an agent-based model of bacteria growth, or a 
computer model of diffusion) that will capture the phenomena 
under study. 

D. Interact - Students interact with their physical models by 
direct observation and collecting data using embedded sensors. 
Similarly, they interact with the virtual model by changing 
parameters, running the model, observing the results, and 
recording data. 

 

Figure 4. Components of a Bifocal Model and activity: (1) The 
physical model, (2) the computer model, (3) the comparison 

phase. 

3. METHODS 
In this paper I will present four BM studies conducted in our lab. I 
will describe the first study (Biology) in detail, and discuss in 
much more brief terms three other implementations of Bifocal 
Modeling activities (Physics, Chemistry, Open-ended). We 
generally employed a design-based research framework in which 
implementation and redesign are closely coupled [7, 8]. The four 
modes of BM implementation are visually summarized in Figure 
5. The rectangles in black indicate the design elements used. 
(Note that the “Research” element was not included in the figure, 
but all of the activities began with students engaging in research.) 

 

Figure 5. A visual summary of the different Bifocal Modeling 
activities, showing the blocks I used in the four studies (in 

black). 

3.1 First Study: Biology 
The first study was conducted with four female high school 
students. The topic of the workshop was bacterial growth. The 
study lasted for a total of about five hours, split across three 
afternoon sessions. Students’ first task was to grow real bacteria 
using supplied tools. They were also shown a short video about 
bacteria growth in a petri dish. Then, the students in groups of two 
did internet research on the bacterial growth curve. For the final 
assignment, the authors conducted a variation of “paper 
modeling” [3, 4] session in which students collectively designed 
an agent-based model of bacterial growth on a whiteboard (Figure 
6 and 7). In the paper modeling activity, students in small groups 
create a detailed block diagram of all aspects of a computer model 
and simulate a few runs (without a computer). For example, 
students define all the needed variables for the model, all the 
agents and their properties/rules, all possible interactions between 
agents, etc. The facilitator helps students translate their ideas into 
the proper “code blocks,” but once students understand the 
general idea, the role of the facilitator transitions to becoming 
more of a documenter of students’ ideas. Paper modeling offers 
some advantages over full-fledged modeling. Namely, students 
only need a short introduction to the programming language, and 
the time is spent almost entirely on conceptual programming 
rather than on the minutiae of writing code. Evidently it is not 
equivalent to programming, but in previous work [4] I have 
shown that it is possible to map ideas and concepts from paper 
modeling to what students would accomplish when doing full-
fledge coding. 

 

  

Figure 6. Students preparing their petri dishes to grow 
bacteria (left), and the time-lapse camera apparatus (right). 

 

 



 
 
 
 

       

Figure 7. Some small snapshots of the “paper modeling” 
activity, in which students collaboratively created a flowchart 

of an agent-based model of bacterial growth. 

3.2   Second study: Physics 
In the second study, 11 high school students (4 females and 7 
males) studied Newton’s laws by investigating the time it takes 
for a ball to travel down a ramp. The study lasted for 6 hours. 
Students were first asked to build a physical model to investigate 
the variables affecting the time it took for a ball to roll down a 
ramp. In groups of two or three, they built ramps and attached 
light and infrared sensors to detect the position of the balls. For 
this pilot study, I shortened the activity of designing a virtual 
model and let students investigate and interact with a pre-made 
NetLogo model. It enabled students to simulate a ball rolling 
down a ramp and vary parameters such as ball mass and ramp 
angle without them having to program the model from scratch. 
Finally, the staff led the students in comparing the behavior of the 
virtual and real models – particularly, to observe that the virtual 
model predicted that ball’s mass had no effect, while the empirical 
data suggested otherwise. 

  

 

Figure 8: One of the projects in the “ball and ramp” study, in 
which students had a kit of parts to build their ramp (above) 
and then compared it with a computer model programmed in 
NetLogo in which students could change several parameters. 

3.3   Chemistry 
In the third study, students investigated the relationship between 
gas volume and pressure in a closed system. This study was 
conducted with the same group of school students as the previous 
study, and for the same amount of time (6 hours). Students were 
asked to interact with a pre-built syringe system with pressure 
sensors, and collected data about the relationship between 
pressure and volume. Next, I provided a NetLogo computer model 
of the gas laws, with which students could interact and see the 
behavior of gas particles in a container with a moving piston. As 
the volume of the physical syringe changed, the computer model 
varied accordingly, and the students compared the match between 
the pressure sensor values and the results supplied by their virtual 
model. 

3.4   Open-ended 
In this study, students could freely choose their topic of interest. 
The group had 12 freshmen high school students (11 male, one 
female), and was conducted as an after school program in a school 
in Moscow, Russia. Over three days (24 hours total), they were 
supposed to build a physical model, a computer model in 
NetLogo, and write a report about the comparison about them.  

Figure 9 shows one typical project, a model investigating liquid 
diffusion, with the physical model on the left and the computer 
model on the right. 

 

Figure 9: One of the projects in the ‘open-ended’ workshop. 
Note the physical model of diffusion on the left, with sensors, 

and the computer model in NetLogo on the right, connected in 
real time. The colored dots represent particles of two different 
liquids mixing, and the graph shows the change over time in a 

“mixing index”. 

4. DATA AND DISCUSSION 
In the discussion, I will mainly focus on the first study. I will also 
discuss one dimension of the data and its presence within the four 
studies 

I will start with a commented narrative of several classroom 
episodes centered on the perceived and hypothesized affordances 
of BM in the first study- the bacterial growth: (a) resolving model 
mismatch, (b) converging on appropriate variables, (c) critically 
evaluating the assumptions of models, and (d) translating between 
micro and macro perspectives. 



 
 
 
 

4.1 Iteratively improving the virtual model to 
resolve mismatch  
Overall, the group’s method was to “run” their whiteboard virtual 
model in order to see how the bacteria grew, to compare the 
results to their goal of the growth curve from the physical data, 
and to resolve the perceived differences between the two by 
adding rules and variables to the virtual model. They repeated this 
process a total of four times in the 1.5 hours of the session, 
developing an increasingly accurate model in the process (figure 
3). 

 

Figure 10: A chronological list of the additions the students 
made to the model, and the instances in which they ran it. The 
results of each run prompted a subsequent rule addition that 

made the model more accurate. 
 

For example, a student observed at one point after “running” the 
virtual model that their growth curve was increasing exponentially 
from the start. She noted that this was not correct, because the real 
growth curve had an initial flat “lag phase” before beginning to 
grow. After a moment’s reflection, she remembered that this was 
because real bacteria have an initial phase of settling into a new 
environment before multiplying. She said “We need to make a 
rule that it takes time before the bacteria grow.” Another student 
chimed in, saying that this would have to be different from a 
maturation period for individual bacteria, because it would apply 
only to the first bacteria on the dish. After more discussion about 
how to code the lag phase in their system, they came up with the 
following rule:  “If a bacterium is in the first generation, it has to 
wait two time steps before reproducing.” Upon running the model 
again, students could see from the resulting curve that they had 
successfully created the lag phase. The students went through a 
similar process to add all of the variables in their model. 

4.2   Converging on appropriate variables 
When the students were searching the web for information about 
bacteria, they collected and wrote down a great deal of 
information that was not necessary for the modeling task they 
were given. For example, some students noted that bacteria are 
prokaryotes, eat many types of human food, and live in a range of 
conditions. However, during the whiteboard virtual modeling 
session, the students only included variables that were necessary 
to define the shape of the growth curve - food/moisture, waste, 
and bacteria health. Global variables like temperature and oxygen 
affect bacterial growth, but the dynamics of the curve assume that 
these global variables are constant or the variations are too small. 

The fact that the students left these variables out without 
prompting suggests that they implicitly understood this instance of 
a controlled variable.  

Students also made decisions regarding the granularity with which 
to describe variables. One student noted multiple types of bacteria 
nutrients in her web research, but went along with the group in 
representing food as a single variable of just one type. When 
asked about this issue, she replied that “I don’t need to be that 
specific for this model.” 

4.3 Critically evaluating the assumptions of 
models 
In addition to learning about the relevant variables for modeling 
bacterial growth, the students in the Bifocal Modeling workshop, 
also, reflected on the underlying assumptions of their models 
themselves - in this case, their representations of space and time. 
Space is represented in NetLogo as a grid of square “patches”, 
units of space that can possess variables like location or food 
concentration. This patchwork representation of space was 
explained to the students at the start of the whiteboard modeling 
session, but at the time of introduction it was only relevant as a 
way to explain how to represent environmental variables such as 
food. However, as the session progressed, the students noticed 
that their bacteria were scattered randomly across the surface in 
their model, and filled the entire surface uniformly as they 
multiplied. In contrast, the real bacteria that they grew formed 
small circular spots. In order to explain the difference, students 
engaged in a discussion about how far bacteria can move, which 
quickly led to the question of the size of whole square grid itself. 
As one student put it, “This square could be a whole dish, or it 
could be just a tiny spot in the real Petri dish… if we were looking 
through a microscope, zooming in, they [the bacteria] will move 
much more. “ At the end of their discussion, they decided that it 
was up to them to define the size of the virtual world they 
designed, if they kept thing in proportion. In previous work [2] I 
have observed students reconsidering space in their computer 
models and engaging in sophisticated discussions about sampling, 
relative size of the molecules in relation to containers, and 
similarity concluding that the arbitrary sizes of the model 
“seemed” unrealistic but were still useful modeling abstraction for 
their projects.  

Time in NetLogo and in the whiteboard model was represented as 
a series of discrete steps called “ticks.” While discussing the 
proper time delay for the lag phase, one student realized that they 
had no agreed conversion between ticks and real time. She asked, 
“Do bacteria get food and moisture each minute? Each hour? Each 
day? Right now we are just doing this with ticks... how can we 
translate the tick into real time?” At the end of another discussion 
about the time scale of bacteria growth in the real world and in 
NetLogo program, the students decided that if bacteria can 
multiply every 20 minutes, they will agree that one tick in the 
virtual world equaled 20 minutes in the physical world. Though 
they did not entirely resolve their questions about representing 
time and space in their model, the students were asking the “right” 
questions; that is, they were asking about the assumptions that 
models make about the world, which are at the heart of scientific 
critical thinking, and again understanding that even seemingly 
unrealistic assumptions or abstractions can be “good enough” for 
their modeling purposes. 



 
 
 
 

4.4   Translating between micro and macro 
perspectives 
A final theme that arose during the modeling session was the 
continual switching of perspectives, from the rules for an 
individual bacterium to the emergent behavior of its entire colony. 
The literature on complex systems education suggests that people 
find it difficult to move in either direction between macro and 
micro perspectives -- either inferring the emergent result of a 
micro-level change to a system, or predicting the micro level 
changes that could cause a given macro-level result [23, 24]. 
Complex system dynamics are also typically taught only in highly 
advanced math and science settings. However, the literature also 
suggests that properly designed activities can help people to grasp 
complex systems concepts much more easily. The iterative 
process of modeling that students went through can be seen as a 
process of writing rules at the level of the individual bacterium in 
order to create emergent outcomes at the level of the colony. With 
no prior academic knowledge of agent-based modeling or 
complex systems, the students in this study managed to describe 
and manipulate a complex system at both levels, micro and 
macroscopic. While BM is not inherently bound to a complex-
systems framework, the data suggests that the process of modeling 
a phenomenon was an effective way to intellectually engage 
students with the dynamics of complex systems. 

4.5 Various approaches toward resolving 
mismatches 
Results from these four pilot studies suggest that adjustment in a 
BM activity would change students’ approach toward resolving 
mismatches between the real and virtual models, within the main 
goal of evaluating the different implementation models (see 
Figure 5). In this section, instead on analyzing particular aspects 
of the bacteria growth study, I change our focus to comparing 
different implementation models, in order to investigate how the 
presence of each of the components of a bifocal modeling changes 
students’ engagement and learning. For example, I was interested 
in finding out how the presence of a longer model building phase 
would influence how students conducted the model comparison.   

In the first study (bacterial growth), I designed the activities so 
that I mostly had students focused on creating a conceptual agent-
based model to match the imagined emergent behaviors to the real 
time-lapse video data. Students were actively constructing a 
model on the whiteboard, even though they were not writing the 
code. Overall, the group’s method was to “run” a few steps of 
their whiteboard virtual model in order to see how the bacteria 
grew, and compare the results to their goal – the growth curve 
calculated from the physical model. Then, they would resolve the 
perceived differences between the two by adding rules and 
variables to the virtual model. In general, as I will discuss in the 
following paragraphs, I observed that due to the intense model 
building activity, students in this study were more engaged in 
investigating the behavior of the phenomenon. 

In the second study about the “ball on a ramp” model, I made 
different design decisions, given the size of the group (11) and the 
available time (6 hours total). Students partially designed and 
developed their own physical model, but the virtual model was 
given to them, so the emphasis was just on interacting with the 
pre-made virtual model. Interestingly, as students proceeded in the 
activity, they became more critical about their own observations 
rather than questioning the pre-made model and its assumptions. 
For example, in their physical experiment, heavier balls appeared 

to roll down faster, possibly due to air resistance, slipping, and 
friction. When the virtual model appeared to refute the idea that 
heavier balls would roll faster (as they experienced in their 
physical experiment), students were surprised, and ended up 
trusting the given computer model more than their own 
observations. For example when asked about which model would 
better represent the scientific phenomenon, one student said that it 
would be “…the virtual model! It is computerized and can 
calculate the time, it is a computer so we trust it!” In general, 
students never questioned if the computer model could possibly 
be wrong, and just assumed that if since they were (supposedly) 
created by experts, they would be “right.” 

In the “Gas Laws” study, again, the emphasis was on interacting 
with pre-made models rather than creating them. In this case, 
students did not build any of the two models: they were given 
both a physical and a virtual model. Students were tasked with 
collecting real-time data from the pressure sensor, and comparing 
with the “ideal” data generated by the pre-made virtual model. 
Students critically evaluated the scientific experiment with 
sensors and offered many ideas about how to improve it, trying to 
make sense of the discrepancies between the two datasets. For 
example, when asked about the discrepancies between the P-V 
graph which resulted from their own physical measurement, 
compared to the one demonstrated by the virtual model, the 
causes that students mentioned were the accuracy of the sensor 
and data-logging software. Again, they never mentioned that the 
virtual models could have been wrong. For example, when trying 
to critique their physical model, students only looked for technical 
issues such as limitations of the sensors, or the limits of 
compressibility of the air inside the syringe. Again, judging by 
their utterances during the activity, similarly to the previous study, 
students did not even consider that the computer models could 
have been wrong or imperfect. They took their accuracy for 
granted and simply critiqued their own data, even after having 
repeated the experience many time with similar results. 

In the last study, students had not only to come up with their own 
idea for a project, but design both the physical and virtual models 
from scratch. During the construction itself of the physical model, 
many dissimilarities were foregrounded. For example, one group 
decided to build a bridge to investigate how much vibration it 
would withstand, together with the accompanying computer 
model (Figure 11). 

 

Figure 11: A Bifocal Model for bridge harmonics, with the 
NetLogo model of a bridge (left), and physical bridge with 

sensors and a vibrating motor (right). 



 
 
 
 

During the construction of the bridge, the facilitators encouraged 
students to run systematic experiments with different frequencies 
of vibration, comparing them with the canonical formula. Even 
though they were able to construct a plot that approximated the 
canonical formula, it was evidently not a perfect match since there 
is intrinsic error in the empirical measures. At first, students felt 
that their model was wrong since it was not fitting the theoretical 
curve perfectly – a big disappointment for the group. However, 
through multiple cycles of measurement and rebuilding the 
system, students realized that they were always getting “messy” 
results, and that their initial goal of a perfect fit was not just a 
matter of “getting it perfect,” but an impossibility. They tried to 
carefully control the voltage source (which controlled the 
vibration frequency), the location of the sensors, and the magnetic 
pieces, but finally realized that even after multiple changes to both 
the computer model and the physical mode they could make the 
models match. 

In this case, I hypothesize that by constructing both the computer 
and the physical models, and glass boxing the entire process, 
students had a much more comprehensive set of tools to make 
sense of the differences and mismatches, as evidenced by the 
sophistication of their attempts to make both systems match. 
However, further research needs to be done to evaluate if the extra 
time invested in learning the programming language and all the 
digital fabrication machines was advantageous in terms of the 
further insight into the models and the learning activity. 

One last example from this implementation model sheds some 
light into the usefulness of the full-fledged Bifocal Modeling 
activity, in which students build both the physical and computer 
models. A group of three students got interested in building a 
model to explain how an ice cube would melt (Figure 12). They 
froze temperature sensors inside an ice cube and placed it on top 
of a heat source (a toaster oven) and also instrumented it with the 
same type of sensors. They carefully tracked the temperature of 
the surface of the heat source and of the ice cube, and carefully 
examined the two plots to generate a tentative equation and plot 
relating them (see top right plots in Figure 12). However, after 
some hours, they realized that their equation was not a 
mechanistic model of what was happening with the ice cube – it 
was merely a descriptive relationship. Even after several 
refinements, the students were unease about their project because 
they wanted to dive deeper into the mechanism of melting and 
really understand why the ice was melting, and not only how fast 
it was happening. They embarked then in a much more ambitious 
project: create a NetLogo model to describe what was happening 
microscopically “inside” the ice cube. They programmed an 
atomic-level agent-based model (see bottom right of Figure 12) in 
which the atoms were connected by springs and allowed to vibrate 
and eventually break off, and “heat waves” (represented by small 
triangles at the bottom) would collide with the atoms and increase 
their vibrational energy. Therefore, students arrived at a 
remarkably complex and accurate mechanistic model of melting 
by going through several iterations of model building and 
comparison. Ultimately, they realized that the equations they were 
given at school (which they were using as a reference pattern for 
the initial part of their project) were not exposing the mechanism 
of the phenomenon, which was ultimately their goal for the 
project. The Bifocal Modeling activity, I hypothesize, gave them 
the technological tools and activities that highlighted 
imperfections in the models, and led them to increasingly complex 
endeavors: their goal went from generating hypotheses about 

“blackboxed” numerical relationships to deep insight into 
mechanisms behind them.   

 

Figure 12: A Bifocal Model for a melting ice cube. The kitchen 
oven melts the ice (left), and NetLogo both models the 

phenomena from a differential equations perspective (top 
right) and agent-based perspective (bottom right). 

6. CONCLUSION 
Our goal in this paper was to offer initial data on the comparison 
of many different implementation models for Bifocal Modeling. 
The first study was a proof of concept that established the 
feasibility and some of the learning gains of students engaging in 
Bifocal Modeling. Next, I intended to compare several models of 
implementation of BM. From the four studies, I observed at least 
one overall pattern across different implementations: resources 
that are given to students have a different perceived value 
compared to the ones that are constructed by the student. “Given” 
resources are always trusted more. Thus, the only way for a 
constructed resource to achieve the same validity as a given one 
would be for it to perfectly match the latter. Therefore, it seems 
like this asymmetry could be counterproductive for students, 
especially when the given model is the theoretical model. 

A second pattern was that in the studies in which there was no 
virtual model-building (gas laws and ball/ramp), students’ level of 
sophistication in comparing real and virtual models was lower, 
and their epistemological stance was even more radical: they 
would critique their work and their own observations but rarely 
question the computational models that were given to them. 

I also observed that the benefits of model-building appear even if 
students are not coding, but creating “paper models” models, but 
only if they use the paper or the whiteboard as a ‘computational 
surface’ that can enact the imagined agent-rules. Within this 
context, the use of the physical model as a reference pattern for 
the creation and refinement of the virtual model was generally 
effective. When students were instructed to design a virtual model 
that recreated the bacterial growth curve, they used their 
previously-learned knowledge about the curve and the physical 
appearance of the bacteria as a reference patterns for what their 
model should generate. When the model data did not match the 
observed data, they went back and made changes. 

One key conclusion from these four implementations is that the 
full model building experience (both physical and virtual) was 
indeed a richer learning experience, especially considering 
students who build several versions and types of computer 
models. However, with the proper facilitation and a careful choice 
of which modeling phase to abbreviate (e.g., bacteria study), 
relatively rich learning outcomes can be achieved in a 
dramatically reduced time-frame. However, these studies have 
shown that model-building, rather than simply having access to 



 
 
 
 

sensors and tangible learning tools, was the determinant factor in 
generating deep engagement with the phenomenon. Further 
research is needed to determine the degree to which model 
building can be abbreviated without significant decrease in 
learning gains and engagement. 
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