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ABSTRACT 
In this paper, we describe a set of user studies within the Bifocal 
Modeling (BM) framework. BM juxtaposes physical and 
computer models using sensor-based and computer modeling 
technologies, highlighting the discrepancies between ideal and 
real systems. When creating bifocal models, students build both a 
physical model with sensors of a given scientific phenomenon, 
and a computer model of the same phenomenon, connecting the 
two in real time with a special hardware interface. In this paper, 
we describe four formats for using BM in the classroom, as well 
as its affordances and characteristics.  

Categories and Subject Descriptors        … 
K.3.1 [Computers and Education]: Computers Uses in 
Education 
General Terms 
Design, Experimentation. 

Keywords 
Computer modeling, sensing, constructivism, physical computing. 

1. INTRODUCTION 
Scientists increasingly use computer models as important tools to 
think about, explain, and predict phenomena in the world, and 
many studies emphasize the importance of children building, 
manipulating, and understanding computational models for 
understanding scientific phenomena [7, 8, 11]. At the same time, 
hands-on, sensor-based science has also been shown to improve 
students’ understanding of challenging scientific topics [9]. 
However, theoretical modeling and sensor-based data-collection 
activities are not often found together in science classrooms. Not 
only they are done separately, but they fail to introduce students to 
computational tools as powerful cognitive instruments to enhance 
our capacity to interpret real world data. Bifocal Modeling (BM) 
[1, 3] is an approach to science pedagogy that challenges students 
to build and compare physical and virtual models in real time. A 
core component of the Bifocal Modeling framework is that 
students engage in not only building physical and computer 
models, but connecting them and investigating their 
commonalities and differences.  

In previous work, Blikstein [2] classified modeling activities into 
two categories: Interaction-Based Modeling (IBM) and 
Construction-Based Modeling (CBM). In Interaction-Based 
Modeling activities, students are presented with a pre-assembled 
sequence of models embedded in a curriculum, and they interact 
with the models by changing parameters and running experiments, 
but with no access to the code itself. Examples of such activities 
are Biologica [5], Molecular Workbench [7], and Connected 
Chemistry [8].  Construction-Based Modeling present students 
with open-ended tasks and require them to design their own 

models [10, 11]. In this paper, we describe four pilot studies 
applying IBM and CBM with high school students learning 
scientific phenomena in biology, chemistry, and physics. Our goal 
was to demonstrate proof-of-concept examples for implementing 
the Bifocal Modeling framework in a variety of high school 
settings. The emphasis and resources allocated to each BM 
activity varied according to the study context. 

2. RESEARCH SETTING                 
Students have three main tasks when building a Bifocal Model 
(Figure 1). First, they design a physical model to explore a 
scientific phenomenon (1), using electronic sensors and data 
logging board (typically the GoGo Board [4]). Second, students 
design a virtual computer model of the same phenomenon using 
computer modeling software (2). Finally, students run both 
models connected in real time to compare and debug the physical 
and virtual models (3), using special hardware interfaces or 
camera-based sensing. They can see side by side the results of 
both models, easily comparing the results (Figure 1). In Figure 2, 
we present two examples of prototypical Bifocal Models, the first 
examining heat transfer, and the second the gas laws. 

 

Figure 1: A general structure of the Bifocal Modeling process 
 

 

      
Figure 2: Examples of Bifocal Models: heat transfer and gas laws. 
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Given that BM comprises many different tools, techniques, and 
classroom facilitation, there are multiple possible formats and 
phases for implementation. In order to structure our user studies, 
we divided the physical and the virtual modeling assignments into 
a sequence of smaller activities:  

A. Research - In each study, students were encouraged to use 
external learning resources, such as the web or books, to gather 
initial information about the phenomenon. The format of this 
phase was dependent on the context of the study and students’ 
previous knowledge about the phenomenon. The general goal of 
this phase was to give students baseline information about the 
normative representations of the phenomenon under scrutiny. 

B. Design - Within a guiding theme (e.g., gas laws), students 
select variables that they want to explore, make hypotheses about 
what they will observe, and design physical and virtual models 
that can potentially answer those hypotheses. In designing the 
virtual model, students typically define the possible variables, and 
conceptualize micro-rules or equations to describe the 
phenomenon. 

C. Build - Students construct physical models (e.g. a ball and 
ramp, a Petri dish filled with agar and bacteria, a system with 
interconnected beakers with different substances) and virtual 
models (e.g. a physics model of gravity and friction, an agent-
based model of bacteria growth, or a computer model of diffusion) 
that will capture the phenomena under study. The most common 
software to develop virtual models for BM has been NetLogo 
[12], a free and open-source environment for agent-based 
modeling. 

D. Interact - Students interact with their physical models by 
direct observation and collecting data using embedded sensors. 
Similarly, they interact with the virtual model by changing 
parameters, running the model, observing the results, and 
recording data. 

In each of the studies described in the paper, we attempted to fit 
the BM framework within a format that would be realistic within 
different types of school implementations. Therefore, in all 
studies, our design decisions were based on previous cycles of 
iterative design (Design-Based Research, [6]), grounded on 
different challenges we had in this specific school context. For 
example, we had to take into account how much time it takes to 
collect sensor data, students’ familiarity with scientific inquiry 
methods, and their programing skills. The activities in the current 
studies will vary from implementations in which we focused on 
interaction with pre-made models (IBM, see [2]), to activities 
which highlighted model-building (CBM). In all of the studies, the 
overall goal was to have students reflect about the different 
between real and ideal systems, following the general structure of 
the BM activity (Figure 1), and evaluating different 
implementation models. 

3. METHOD 
Three of the studies took place in an after-school workshop 
session for high school students ranging from 9th to 11th grade, in 
the United States. These workshops and studies were all 
conducted in the same laboratory setting, with students who had 
not previously learned the topics of inquiry in their classes. The 
fourth workshop was an after school program in a high school in 
Moscow, Russia. 

1. Biology: The first study was conducted with four female high 
school students and lasted for a total of about five hours, split 

across three afternoon sessions. The researchers tasked students 
with collecting a sample of bacteria from the environment and 
preparing it in a Petri dish. When finished, they used a provided 
time-lapse camera that captured images of the dishes every 30 
minutes for five days. The images were automatically compiled 
into a video that showed the students the growth pattern of the 
bacteria.  Because of the long time required to assemble a long-
enough movie (1 week), we also provided students with a movie 
previously made by the research team. Students were grouped into 
two pairs and each pair used a computer to do internet research on 
the bacterial growth curve. In the final session, the students 
conducted a variation of “paper modeling” [2] in which they 
collectively designed an agent-based model of bacterial growth on 
a whiteboard with staff providing verbal scaffolding. 

2. Physics: In the second study, 11 high school students (4 
females and 7 males) studied Newton’s laws by investigating the 
time it takes for a ball to travel down a ramp. The study lasted for 
6 hours. Students were first asked to build a physical model to 
investigate the variables affecting the time it took for a ball to roll 
down a ramp. In groups of two or three, they built ramps and 
attached light and infrared sensors to detect the position of the 
balls. For this pilot study, we shortened the activity of designing a 
virtual model and let students investigate and interact with a pre-
made NetLogo model made by one of the authors. It enabled 
students to simulate a ball rolling down a ramp and vary 
parameters such as ball mass and ramp angle without them having 
to program the model from scratch. Finally, the staff led the 
students in comparing the behavior of the virtual and real models 
– particularly, to observe that the virtual model predicted that 
ball’s mass had no effect, while the empirical data suggested 
otherwise.  

3. Chemistry: In the third study, students investigated the 
relationship between gas volume and pressure in a closed system. 
This study was conducted with the same group of school students 
as the previous study, and for the same amount of time (6 hours). 
Students were asked to interact with a pre-built syringe system 
with pressure sensors, and collected data about the relationship 
between pressure and volume. Next, we provided a NetLogo 
computer model of the gas laws, with which students could 
interact and see the behavior of gas particles in a container with a 
moving piston. As the volume of the physical syringe changed, 
the computer model varied accordingly, and the students 
compared the match between the pressure sensor values and the 
results supplied by their virtual model. 

In studies 1-3, all students were given two open-ended 
questionnaires about the content before and after the session. They 
were also videotaped during all activities, their computer usage 
was documented with screen-capture software, and researchers 
asked questions and kept field notes. Students’ notes and sketches 
were scanned and stored. 

4. Open-ended: In this study, students could freely choose their 
topic of interest. Over three days (24 hours total), they were 
supposed to build a physical model, a computer model in 
NetLogo, and write a report about the comparison about them. 
The entire workshop was videotaped and students answered pre- 
and post-questionnaires. Figure 3 shows one typical project, a 
model investigating liquid diffusion, with the physical model on 
the left and the computer model on the right. 
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Figure 3: One of the projects in the ‘open-ended’ workshop. 
Note the physical model of diffusion on the left, with sensors, 

and the computer model in NetLogo on the right, connected in 
real time. 

 

All four implementation modes are summarized in Figure 4, with 
the rectangles in black indicating the design elements used. 

 
Figure 4: Different Bifocal Design implementation modes, 

showing the blocks we used in the four studies (in black). 

4. DATA AND DISCUSSION 
In this paper, for space considerations, we will focus mainly on 
one dimension of the data: the way students resolve the 
mismatches between the real and virtual models, within the main 
goal of evaluating the different implementation models.  

In the first study (bacterial growth, see Figure 5), we designed the 
activities so that we mostly had students focused on creating a 
conceptual agent-based model to match the imagined emergent 
behaviors to the real time-lapse video data. Students were actively 
constructing a model on the whiteboard, even though they were 
not writing the code. Overall, the group’s method was to “run” a 
few steps of their whiteboard virtual model in order to see how the 
bacteria grew, and compare the results to their goal – the growth 
curve calculated from the physical model. Then, they would 
resolve the perceived differences between the two by adding rules 
and variables to the virtual model. For example, a student 
observed at one point after “running” the virtual model that their 
growth curve was increasing exponentially from the start. She 

noted that this was not correct, because the real growth curve had 
an initial flat “lag phase” before the beginning of the more 
pronounced growth phase. After a moment’s reflection, she 
remembered that this was because real bacteria have an initial 
phase of settling into a new environment before multiplying. So 
she went on to add a rule which determined that the bacteria 
would “wait” some time before starting to grow. Most students 
went through a similar process to add new variables and rules to 
their initial model. In general, we observed the students in this 
study to be more engaged in investigating the behavior of the 
phenomena. 

 
Figure 5: Physical model of the bacterial growth study, 
with a time-lapse camera and several petri dishes. 

In the second study about the “ball on a ramp,” we made different 
design decisions, given the size of the group (11) and the available 
time (6 hours). Students partially designed and developed their 
own physical model, but the virtual model was given to them, so 
the emphasis was just on interacting with the pre-made virtual 
model (interaction-based modeling). Interestingly, as students 
proceeded in the activity, they became more critical about their 
own observations rather than questioning the pre-made model and 
its assumptions. For example, in their physical experiment, 
heavier balls appeared to roll down faster, possibly due to air 
resistance, slipping, and friction. When the virtual model appeared 
to refute the idea that heavier balls would roll faster (as they 
experienced in their physical experiment), students were 
surprised, and ended up trusting the given computer model more 
than their own observations. 

In the “Gas Laws” study, again, the emphasis was on interacting 
with pre-made models rather than creating them. In this case, 
students did not build any of the two models: they were given a 
physical and a virtual model. Students were tasked with collecting 
real-time data from the pressure sensor, and comparing with the 
“ideal” data generated by the pre-made virtual model. Student 
critically evaluated the scientific experiment with sensors and 
offered many ideas about how to improve it, trying to make sense 
of the discrepancies between the two datasets. For example, when 
asked about the discrepancies between the P-V graph which 
resulted from their own physical measurement, compared to the 
one demonstrated by the virtual model, the causes that students 
mentioned were the accuracy of the sensor and data-logging 
software. Again, they never mentioned that the virtual models 
could have been wrong. 

In the last study, students had not only to come up with their own 
idea for a project, but design both the physical and virtual models 
from scratch. Despite having more time (24 hours), the building of 
the physical model ended up being a significant time commitment 
for most, and left relatively little time for the conceptual and 
computational model. Therefore, a formal post-facto comparison 
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of the two models was not properly completed in some cases. 
However, during the construction itself of the physical model, 
many dissimilarities were foregrounded. For example, one group 
decided to build a bridge to investigate how much vibration it 
would withstand, together with the accompanying computer 
model (Figure 6). 

 
Figure 6: A Bifocal Model for bridge harmonics 

 

During the construction of the bridge, the facilitators encouraged 
students to run systematic experiments with different frequencies 
of vibration, comparing them with the canonical formula. Even 
though they were able to construct a plot that approximated the 
canonical formula, evidently it was not a perfect match, which 
was a crushing disappointment for the group. However, through 
multiple cycles of measurement and rebuilding the system, 
students acquired a much more refined understanding of the 
phenomena and of the scientific method itself. 

5. CONCLUSION 
Our goal in this paper was to offer some initial data on the 
comparison of many different implementation models for Bifocal 
Modeling. From the four studies, we observed at least one overall 
pattern: the epistemological resource most valued by the majority 
of the students were the ones “given” to them by authority, and 
the only ‘mode’ to achieve the same validity, it seemed, was to 
perfectly match the given data. Many students, indeed, believe 
that a perfect experiment would generate a perfectly smooth 
graph. A second pattern was that in the studies in which there was 
no virtual model-building (gas laws and ball/ramp), students’ level 
of sophistication in comparing real and virtual models was lower, 
and their epistemological stance was even more radical: they 
would critique their work and their own observations but rarely 
question the computational models that were given to them. 

Finally, we observed that the benefits of model-building appear 
even if students are not coding, but creating ‘white board’ agent-
based models, but only if they indeed use it as a ‘computational 
surface’ that can enact the imagined agent-rules. Within this 
context, the use of the physical model as a reference pattern for 
the creation and refinement of the virtual model was generally 
effective. When students were instructed to design a virtual model 
that recreated the bacterial growth curve, they used their 
previously-learned knowledge about the curve and the physical 
appearance of the bacteria as a reference patterns for what their 

model should generate. When the model data did not match the 
observed data, they went back and made changes. 

One key conclusion from these four implementations is that the 
full model building experience (both physical and virtual) was 
indeed a richer learning experience. However, with the proper 
facilitation and a careful choice of which modeling phase to 
abbreviate (e.g., bacteria study), similar learning goals can be 
achieved in a dramatically reduced time-frame. However, these 
studies have shown that model-building, rather than simply having 
access to sensors and tangible learning tools, was the determinant 
factor in generating deep engagement with the phenomenon. 
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