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Abstract: In this paper we introduce Combinatorix, a learning environment for supporting collaborative 
problem-solving in probability. The tabletop system has two working spaces where users perform different 
actions: on the horizontal surface, users combine tangible objects in different orders and watch the effects of 
various constraints on the problem space. A vertical display shows an abstract representation, such as a 
probability tree, to reflect how users’ actions influenced the total number of combinations. We describe our 
iterative participatory design process with college students taking a probability class, as well as their informal 
feedback with the final system. We discuss the benefits and the challenges of our approach and conclude with 
an analysis of how tabletops and tangible user interfaces can affect education.   

INTRODUCTION 
Tversky and Kahneman [11] demonstrated that everyone, even professional statisticians, suffer from systematic 
biases in their intuitive judgments of probability. Yet understanding probability is essential for dealing with 
everyday life. Politicians often make policy without understanding the implications of the data available to 
them. Patients have difficulty interpreting medical test results or evaluating the costs and benefits of a vaccine. 
Batano and Sanchez [2] identified a variety of student mistakes when solving probability problems, including 
the gambler's fallacy, data representativeness, and equiprobability bias. Even graduate students who plan to 
teach mathematics maintain strong misconceptions [7]. More importantly, a lot of classic mathematical 
problems can be seen and solved as probabilistic processes [12].  
Tabletop systems have been used successfully to help users manipulate virtual concepts as if they were physical 
objects [3]. Our challenge is to use tangible interaction to support learning of complex abstract concepts that 
involve a combinatorial explosion, in which even simple problems result in hundreds of possibilities. 
Combinatorics is a branch of probability that deals with the enumeration, combination, and permutation of sets 
of elements and their mathematical relationships. We believe that combined with existing frameworks on 
teaching probabilistic thinking [1], those technologies have the potential to impact the way students learn 
combinatorics, probability and statistics.  
 

 
Figure 1. Combinatorix: Tangible elements control a tabletop display (left) with corresponding probability tree (right) 

 
This paper describes the design and development of Combinatorix (Fig.1), a tangible tabletop interface in which 
users manipulate physical objects to obtain deeper insights into complex mathematical relationships. Our goal is 
not to transform virtual into physical objects but rather to use physical objects to explore fundamentally abstract 
concepts in combinatorics. 
 
Theoretical Framework 
Combinatorix is not designed to teach probability per se, but rather to provide a learning environment that 
encourages small groups of students to explore and discuss combinatorics problems. They should be able to 
express ideas and hypotheses, struggling with concepts in a productive way. Ideally, they will build their own 



theories, appreciate the challenges of defining an elegant formula and understand what their personal strengths 
and weaknesses are.  
We support Fast’s [4] constructivist approach, which emphasizes that “overcoming misconceptions through 
supportive frameworks such as a series of anchoring situations". Our approach builds upon the "Preparing for 
Future Learning" (PFL) framework [9] in which students begin by analyzing contrasting examples of a concept 
to isolate important “deep features” of a combinatorics problem, in contrast to the "surface features" or 
superficial characteristics of a model [6]. Rather than limiting the number of cases, students should be able to 
express a variety of cases, each with their own visual representations.  
The learning environment should provide students with tools for reasoning about probabilities, including 
visualizations that support their reflections. Students should be able to associate common features of a problem 
with accepted mathematical representations, e.g., a probability tree. This implies that students need two 
interactive spaces: one for manipulating concrete, physical objects to explore the problem space and one for 
displaying the corresponding abstract representation of the problem space. The specific learning goals are for 
students to: 

1. learn the concepts of sample and event spaces, with probability defined as a ratio of the two; 
2. compute sample and event spaces using factorials, permutation and combinations with various 

constraints; and 
3. identify the deep structure of a problem as a probability tree and transfer this understanding to new 

situations. 

Methods: Participatory Design Study 
The original motivation for this project stemmed from observations of students in a University-level course in 
combinatorics. Faced with only paper and pencil, many had difficulty developing intuitions about probabilities 
[5] and suffered from the ‘stereotype threat’ [10] that they are poor in math. We hoped that letting students 
manipulate concrete objects while simultaneously observing the corresponding changes in deep structure, e.g. a 
probability tree, would reinforce their intuitions about the underlying mathematical principles. Our goal was to 
create an engaging and playful environment that avoids excessive mathematical notations and encourages 
discussion. 
We began by conducting ten one-hour semi-structured interviews with students currently enrolled in a 
probability class. We found that less proficient students: 
• crave concrete examples and visualizations, 
• attempt but often fail to create their own representations, due not only to their lack of domain expertise but 

also to the limitations of pen and paper: one cannot draw a probability tree with 100 leaves,  

• jump too quickly to abstract representations, e.g., formulas and mathematical notations, a major barrier to 
conceptual understanding,  

• experience anxiety and cognitive load when faced with mathematical notations, and  

• do not know where to start, often asking the teaching assistant to effectively solve the problem for them. 
We next created a mockup with cardboard letters representing the building blocks of combinatorial problems. 
Participants could address questions such as: How many possible combinations of A, B and C are there? We 
also provided cardboard constraints to address questions such as: How many combinations obtain if A and B 
must be next to each other? Participants formed questions by combining physical letters and we created a 
corresponding visual representation (Fig. 2) with paper or on a whiteboard. One student suggested an innovative 
visualization, a kind of fractal representation that we tried with other students (Fig. 2, bottom). Based on these 
explorations, we designed Combinatorix, a custom-made tabletop with tangible objects that students manipulate 
to express and explore combinatorial problems.  

 

 
Figure 2. Participatory design: Cardboard mockup with paper-based tree (top) and graph representations (bottom) 



 
Combinatorix 

Hardware 
Combinatorix (Fig. 4) supports several input techniques: a camera detects the location of fiducial markers and a 
wiimote provides the position of multiple infra-red pens. A projector displays additional information around the 
tangible objects. The interactive surface is 60 x 45 cm. and can accommodate up to four students at the same 
time.   
 

 
Figure 3. Combinatorix setup: The webcam detects location of fiducial markers; the wiimote detects position of infra-

red pens 

Software 
The underlying application is written in Java and uses the Reactivision engine to detect fiducial makers [8]. 
Additional libraries, e.g., wrj4P50, communicate with the wiimote. The system is modular and can easily 
accommodate the creation of additional operators for constraining the sample space. 
 
The current version displays two kinds of information: first, the tabletop interface shows a specific number of 
placeholders for objects. Letters can be placed on those spots to form a new combination. At the same time, the 
remaining number of letters for each step is displayed on top of each placeholder. A second screen displays a 
probability tree reflecting the current state of the problem. Letters can easily be replaced by other elements, 
including virtual,  laser-cut and 3D-printed physical objects. Combinatorix supports up to 10 tangible objects 
and 20 virtual ones. 

Interaction Techniques 
Students can interact in two ways: 1) Use tangible letters to form combinations or to add constraints, e.g., fixing 
the position of a particular element. For example, Fig. 4 (top) shows the number of combinations when A and B 
are attached to each other. 2) Use a pen to annotate the probability tree. For example, Fig 4 (bottom) shows how 
to “prune” certain sections, which is equivalent to dividing a factorial number with the combinations that don't 
satisfy the constraint.  
 

 
Figure 4. Combinatorix lets users switch between two modes: constructing a combination using physical objects (left) 
and annotating a probability tree (right).  

 



Preliminary Results 
Five participants tested Combinatorix, including two high-school students and three university students. We 
asked them to use the table to solve five problems of increasing difficulty: “The letters A, B, C, D, E form how 
many different linear arrangements?” 1) in total, 2) for which A and B are next to each other, 3) where E is not 
last in line, 4) for which A is before B, and 5) where A and B are next to each other and C is not first in line?".  

General reception 
Users were enthusiastic about using the system to solve the problems and were generally able to come up with 
the right solution after a few minutes. Problem four was the most difficult since the system does not provide any 
relevant hints. Instead, students tried a brute force solution, exhaustively counting the number of possible cases. 
The university students eventually realized that the problem was about symmetry: there is an equal number of 
combinations in which A is before B and B is before A. The solution is thus to divide the total number of 
combinations by two, e.g. 5! / 2. High school students required more support, in the form of prompts from the 
experimenter, to find this solution. Such prompts could easily be integrated into the system as automatic 
feedback; for instance, if a student spends too much time on a particular problem, Combinatorix could display a 
small hint to unblock the situation.  
 
Participants found the current prototype very useful for certain types of problems: Ann1 noted that “All the 
functionalities you could add should not do the thinking for the student; if I use this piece, it’s telling what the 
solution is... well not really. It’s more like a hint". Interviewer: "So do you think it’s too much help?"; Ann: "I 
think it’s a good level of help, because it conveys the notion that in this situation there are only four 
combinations that can be here [...]”. 
 
However, Combinatorix clearly does not support all types of combinatorics problems. Henry said that "this is a 
really elegant way to show the concept of factorials; but for some problems I feel like I need to already know 
that concept to figure it out to get the solution". He also noted "it would be excessive to build a new model for 
each problem”. This is the main challenge for our approach: some classes of problems can be supported easily, 
but others might require a totally different interface.  

Although Combinatorix currently supports high-school level problems, future versions will address college-
level problems including conditional probabilities (Bayes’ theorem), independence of events, statistical indices 
(expected value, variance, standard deviation), discrete distributions (binomial, multinomial, geometric, 
hypergeometric, negative binomial), continuous distributions (uniform, normal, exponential, beta), law of large 
numbers and central limit theorem. We plan to support specific problems, such as the ones described, rather 
than creating a fully open-ended system, providing additional scaffolding to extend basic functions. 

Our next step is to deploy the Combinatorix prototype, with additional problem types, during the office hours of 
a university-level probability class.  Students will be able to interact with the system with or without the help of 
teaching assistants. 

Conclusion 
Due to the complexity of the domain i.e. combinatorics, and more generally probability, we do not envision 
Combinatorix as a stand-alone teaching tool. Rather, we consider it as a platform for students to reflect on 
problems, offload the cognitive burden of picturing all possible options and as a tool to provide small hints 
when students are stuck on a problem. Initial user testing revealed that students thought of it as a useful tool, but 
also mentioned important challenges that need to be addressed. For space considerations, this is a sample of the 
data and it tells us that Combinatorix has the potential to engage students in probabilistic thinking. For the final 
conference paper, we will include data from additional subjects and discuss how physical actions impact 
students’ understanding of combinatorics. 
For future versions of Combinatorix, we intend to evaluate its potential as a collaborative tool in a formal 
learning setting. Moreover, we will organize additional participatory design sessions to revise our prototype and 
gain additional insights from users. Finally, we plan on more formally assessing its effectiveness by conducting 
a series of controlled experiments.  
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