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Abstract.  Recent  research  in  CS  education  has  leveraged  machine  learning  techniques  to 
capture  students’ progressions through assignments  in  programming courses  based on their 
code submissions [1, 2]. With this in mind, we present a methodology for creating a set of  
descriptors of the students’ progression based on their coding styles as captured by different 
non-semantic and semantic features of their code submissions. Preliminary findings show that 
these descriptors extracted from a single assignment can be used to predict whether or not a  
student got help throughout the entire quarter. Based on these findings, we plan on developing a 
model  of  the  impact  of  teacher  intervention  on  a  student's  pathway  through  homework 
assignments.
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1 Introduction 

Recent work in CS education has leveraged machine learning techniques to gain in-
sight into the ways in which students approach a given programming assignment. 
Piech et al. [2] created a graphical model of how students in an introductory program-
ming course progressed through a homework assignment. They were able to extract 
characteristic pathways, which can be used to predict their midterm grades.  

Our own research examines the relationship between students’ coding styles and their 
general help-seeking behaviors; we want to know when students learning to program 
get help, why they get help, and how the help impacts their progression. We hope that 
this work could be used to determine potential  points on a student’s learning path 
where help interventions would be most effective; this could transform into a techno-
logy feature for recommendation of “help” in tutor learning systems.

In this preliminary study, we used machine learning techniques to show that the evol-
ution of a student’s code in a single assignment could be predictive of whether or not 
that student sought help throughout the academic quarter. This suggests that student 
coding patterns might be indicative of relevant behavioral or cognitive processes of 
students learning to program that give rise to certain help-seeking behaviors.

2 Data Sources

We collected data from a Stanford introductory course on programming methodolo-
gies in Java. Every time a student tried to compile their program we collected text  
snapshots of their code, regardless of whether or not their code compiled. We had ac-



cess to a subject pool of 370 students. The target assignment we analyzed contained 
8,772 snapshots of code across all students. To measure help-seeking behavior, we 
collected tracking data from an on-campus homework help service, where teaching 
assistants (TAs) track student visits. Thus, help-seeking behavior here refers to wheth-
er or not a student got help. Over the span of the quarter, there were 1,148 visits in the  
help center from 172 distinct students. Of these students, 91 sought help 1 or 2 times, 
and 81 sought help three times or more. 

For this study, we analyzed a single assignment in which students were tasked with 
writing a program that accepts an arbitrary list of numbers and outputs the maximum 
and minimum values. 

3 Methods

Our  basic  methodology,  from data  preprocessing  to  classification,  can  be  broken 
down into three stages: characterizing code snapshots, characterizing students based 
on the ensemble of their snapshots, and classification of TA help data.

3.1 Characterizing code snapshots

We created a set of both semantic and non-semantic features with which we tried to  
capture what we refer to as “coding styles”. The non-semantic features are: number of 
lines of a code, number of comments, and number of comment blocks. The semantic 
features are: number of variable declarations, number of method declaration, and the 
number  and  nesting  level  of  loops  and  conditional  statements  within  the  code. 
Through a preliminary examination of student code submissions, we found that these 
features best describe the constrained solution space of the target assignment. 

As a metric for dissimilarity measures, we used a simple Euclidian distance. For the 
clustering step, the data was normalized by the mode of each feature.

3.2 Characterizing students: Cluster-based student feature selection

We clustered a student’s snapshots based on structure similarities representative of 
different possible program structures. This allowed us to characterize the progression 
of a student through the assignment as a progression through clusters. In the unsuper-
vised  learning  step,  these  clusters  were  generated  using  kernelized  k-means  with 
Gaussian kernels [3]. The number of optimal clusters was determined by a combina-
tion of silhouette value maximization [4] and Davies-Bouldin index minimization [5]. 

Assigning each snapshot to the corresponding cluster, we defined the students with a 
new feature set consisting of: the number of different clusters visited, the total number 
of cluster changes, a measure of the variance of the number of successive snapshots 
within the same cluster, the time to solution, and the total count of clusters visited.



3.3 Classification of the TA intervention data

In order to classify the TA intervention data, we trained a nonlinear Support Vector 
Machine (SVM) with a Gaussian radial basis function kernel with the student feature 
data by means of 10-fold cross-validation. Given the highly non-linear feature space, 
kernelized SVM was best suited for the binary classification task [6]. We also ran a 
Naïve Bayes Classifier with less promising results (data available upon request).

4 Results

As shown in Table 1, the kernelized SVM trained on the student population features 
predicts whether a student got help or not performs with an accuracy of 66.5% with a 
precision of 63.6% and a recall of about 71%. 

Accuracy
Precision
Recall

66.5%
63.6%
71.1%

Figure 1 shows the dissimilarity matrix after clustering the student snapshots into 16 
clusters and arranging them according to the clusters. Each matrix entry mij represents 
the dissimilarity in terms of Euclidian distance between snapshot i and snapshot j,  
with black being a dissimilarity of zero. As can be seen, the snapshots are well separ -
ated into the clusters (which is further supported by the silhouette value of about 0.72 
in Table 2). The selection model based on the Davies-Bouldin Index and the silhouette  
value suggests 16 clusters as a good representation (see Table 2). 

Optimal choice of clusters:
Silhouette index:
DB-index:

16
0.72
0.43

Table 2. Characteristics of the k-means clusters of code snapshots

Fig. 1. Dissimilarity matrix of the k-means clusters, and 2 snapshots 
representative of their clusters

Table 1. Performance of Binary SVM Classifier



To illustrate how codes within different clusters can differ from each other, we have 
added two code snapshots representative of their clusters in Figure 1. As can be seen,  
the code snapshot on the right of the dissimilarity matrix has two if statements nested 
within a loop; the code on the left has two if statements nested within a loop, which is 
in turn nested in another if statement.

5 Conclusions

Using a simple measure of a student’s progress and representation of their code in a 
single assignment, we were able to predict with accuracy of about 66.5% the student’s 
help-seeking behavior across the whole quarter. In light of the fact that the representa-
tion is very simplistic, and that we have excluded any complex measures entailing 
temporal dimensions, these results indicate that there is structure in the relationship 
between a student’s progression through an assignment and their help-seeking behavi-
or, and this relationship requires further exploration. Nonetheless, these results are es-
pecially interesting because they suggest that there are generalizable characteristics 
found in a small sample of code from one assignment early in the class that can be in-
dicative for help seeking behavior across the entire quarter. 

This project is the start of an extended investigation of student programming data.  
Based on the preliminary findings, we intend to integrate the TA help data and weekly 
survey data about motivation and perceived difficulty into a Markov model of assign-
ment progress that can predict student grades and suggest critical points for interven-
tion. 
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