
Programming Pathways: A Technique for Analyzing Novice

Programmers’ Learning Trajectories

Marcelo Worsley, Paulo Blikstein

Stanford University, Graduate School of Education, Stanford, CA, USA

{mworsley, paulob}@stanford.edu

Abstract. Introductory computer science courses are a valuable resource to stu-

dents of all disciplines. While we often look at students’ end products to judge

their proficiency, little analysis is done on the most integral aspect of learning

to programming, the process. We also have a hard time quantifying how stu-

dents’ programming changes over the course of a semester. In order to address

these we show how a process-oriented analysis can identify meaningful trends

in how programmers develop proficiency across various assignments.

Keywords: Machine Learning, Computational Thinking, Programming.

1 Introduction

We are seeing a shift in who is using computers, and in who is doing computer pro-

gramming. A variety of disciplines are realizing that the skills of computational think-

ing and debugging, for example, are applicable to nearly every domain. There is

something about the process of learning computer programming that facilitates one’s

ability to think constructively about any number of tasks. Despite the importance of

the process, most computer science curricula rely on a final code submission and

course examinations in order to validate student learning. In order to get back to pro-

cesses, this work closely analyzes student learning processes for a class of introducto-

ry programming students. Furthermore, the analysis demonstrates how we can use

techniques from computer science to automatically identify important changes that

take place in the process that students use to complete their assignments.

2 Previous Work

Traditional work in computer programming assessment has focused on learning out-

comes (Cooper, Cassell, Cunningham, Moskal 2005; Olds, Moskal and Miller 2005),

and designing the right environment for enabling students to achieve those learning

outcomes (Moskal, Lurie, Cooper 2004; Goldman 2004). Ironically, initial work in

computer science education was heavily centered on process based assessments. For

example, from Soloway and Spohrer (1989) we observe that more expert program-

mers are “planners,” who make large, low frequency code updates. The trend towards

process recently re-emerged (Jadud 2005, Blikstein 2011 and Piech et al. 2012).

These three studies utilized snapshots of student compilations as the basis of their

analysis. This study borrows elements from Jadud, Blikstein and Piech et al., but dif-

fers in that we look at changes in students’ programming process over a set of as-

signments, instead of just looking at one assignment.

3 Methods

This work was intended to automatically detect the evolution of student programming

strategies and knowledge throughout an introductory programming class. In order to

do this, we focused on studying “tinkering,” or bricoleur, and “planning” (Turkle and

Papert, 1991). We operationalized “tinkerer” and “planner” to be related to the num-

ber of characters or lines that a student adds, removes or modifies between snapshots.

We are not concerned with absolute labels of tinkering and planning, but are looking

for relative changes for each student and to tinkering and planning episodes.

Data comes from four programming assignments that seventy-four students, from a

research-1 university, completed during the course of several weeks of their class.

These assignments do not represent the entirety of the assignments for this course.

Two early assignments were omitted because the nature of the programming envi-

ronments varied greatly from later assignments.

We first extract the number of lines added, lines removed, lines modified, charac-

ters added, characters removed and absolute value of characters modified between

successive snapshots, a value that we collectively refer to as the “update characteris-

tics.” These values exclude comments and are based on computing the line-by-line

difference between snapshots. “Modified” was used for lines that are at least 70% the

same as the line in the previous snapshot.

The extracted values are z-transformed across all students for a given assignment.

In order to compute the similarity between students’ sets of snapshots, we used dy-

namic time warping, and then scaled all sequences to be of the same length before

computing the Euclidean distance between a given pair of snapshots. We then observe

whether each student’s programming pattern for Assignment 3 was most similar to

that of Assignment 1, Assignment 2. Similarly, we record if Assignment 4’s updates

are more similar to that of Assignment 1, Assignment 2 or Assignment 3. Each stu-

dent is assigned to a group based on their completion of the last two assignments,

with the options: Assignment 1 - Assignment 1, Assignment 1 - Assignment 2, As-

signment 1- Assignment 3, Assignment 2 - Assignment 1, Assignment 2-Assignment

3, Assignment 2-Assignment 2. For ease of interpretation we’ll give each group a

name (Table 1).

Table 1. Proportion of Students in Each Cluster

Cluster 1- 1 1- 2 1-3 2-1 2-2 2- 3

Name ALPHA BETA DELTA GAMMA ZETA OMEGA

Proportion 0.35 0.15 0.22 0.12 0.08 0.08

4 Results and Discussion

Table 1 shows the relative sizes of each group. Comparing clusters across assignment

scores, we do not see any significant differences. However, when we compare exami-

nation scores (Table 2) we see a clear hierarchy, with OMEGA at the top and ZETA

at the bottom
1
. The first thing that we note is that the data is normally distributed with

the two smallest groups, ZETA and OMEGA occupying the two extremities. We also

present data about help seeking frequency, disaggregated by month, for each group.

ZETA, the worst performing group, is the most frequent attender of help during the

first two months (Help 1 and Help 2) of the course, but fall to the least frequent at-

tenders during the last month (Help 3). OMEGA, the highest performing group quick-

ly transitions into being frequent help seekers (Help2), and both GAMMA and

ALPHA become more frequent help seeking attenders
2
.

Table 2. Ranking of Groups Across Variables

Rank Midterm Final Help 1 Help 2 Help 3 Update Vector3

1 OMEGA OMEGA ZETA ZETA BETA ALPHA

2 GAMMA GAMMA GAMMA OMEGA OMEGA ZETA

3 DELTA ALPHA BETA BETA GAMMA OMEGA

4 ALPHA DELTA DELTA GAMMA ALPHA DELTA

5 BETA BETA OMEGA ALPHA DELTA BETA

6 ZETA ZETA ALPHA DELTA ZETA GAMMA

In an effort to characterize each groups progress over the course of the class, we

present their change in update characteristics between Assignment 1 and Assignment

4 in the “Update Vector” column. ALPHA, ZETA and OMEGA share similar update

vectors and DELTA, BETA and GAMMA share similar update vectors. These simi-

larities are startling, given that ALPHA, ZETA and OMEGA occupy different parts of

the performance spectrum, and the help seeking spectrum.

Looking closer we saw that students with different levels of expertise get differen-

tial benefits from help and differential benefits from their overall update approach.

Additionally, we see that students use their code updates differently. Some use their

updates as a way for checking syntax. Other students use updates to make their code

more efficient. The other important difference is that students change in different

ways. Some groups change in terms of average update size, but not in the overall

approach. This was largely the case of ALPHA and ZETA. Alternatively some

groups: DELTA, GAMMA, BETA and OMEGA; changed in their sequence of small

1 ZETA was outscored on the final exam by ALPHA, GAMMA and OMEGA (t(30) - 2.6896 p

< 0.012, t(13)= 3.586 p < 0.003, t(10)=2.1778 p<0.04) and on the midterm (t(30)=2.5264

p<0.02, t(13)=2.254 p < 0.04, t(10) = 2.386 p< 0.04), as well as by DELTA (t(20) = 2.221

p< 0.04).
2 GAMMA attended fewer help sessions that ZETA in month 1 and month 2 (t(20)=2.20 p<

0.0049) and month 2 (t(20)=2.786 p < 0.0114).
3 Similarity was computed using the f-statistics across all six items in the update vector.

and large changes, or tinkering and planning episodes, but maybe not in the average

size of those updates.

Thus as we consider these types of analysis in future work, and study, in greater

depth how different resources and actions impact traditional outcome based measures,

we have to consider that students may change in different ways and look to better

explain these different processes.

5 Conclusion

In this paper we presented an algorithm for studying changes in programming styles

among novice programmers. We showed how using a process-oriented analysis was a

meaningful approach. We also showed how looking at changes in students’ program-

ming update characteristics, relative to themselves, may provide the most useful lens

for studying programming proficiency, as measured through assignment grades and

test scores. In future research we will expand this work to a larger population of users

and combine this analysis with additional qualitative data to more closely corroborate

our interpretation of the data, especially as it relates to planning and tinkering.

References

1. Blikstein, P.: Using learning analytics to assess students' behavior in open-ended pro-

gramming tasks. In: 2011 Learning Analytics Knowledge Conference (LAK ’11). pp. 110-

116. ACM, New York, (2011)

2. Cooper, S, Cassel, L., Moskal, B., and Cunningham, S.: Outcomes-based computer science

education. In: 36th SIGCSE technical symposium on Computer Science Education

(SIGCSE ‘05). pp. 260-261. ACM, New York (2005).

3. Goldman, K.: A concepts-first introduction to computer science. In: 35th SIGCSE tech-

nical symposium on Computer Science Education (SIGCSE ‘04). pp. 432-436. ACM, New

York (2004).

4. Jadud, M.: Methods and tools for exploring novice compilation behaviour. In: 2nd Interna-

tional Workshop on Computing Education Research (ICER ‘06). pp. 73-84. ACM, New

York (2006).

5. Moskal, B., Lurie, D. and Cooper, S.: Evaluating the effectiveness of a new instructional

approach. In: 35th SIGCSE technical symposium on Computer Science Education

(SIGCSE ‘04). pp. 75-79. ACM, New York (2004)

6. Soloway E. & Spohrer, J.: Studying the novice programmer. L. Erlbaum Assoc. Inc.,

Hillsdale (1988)

7. Turkle, S., Papert, S.: Epistemological Pluralism and Revaluation of the Concrete. In: I. H.

a. S. Papert (eds.), Constructionism. pp. 161-192. Ablex Publishing Co., Norwood (1991)

8. Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P.: (2012). Modeling how stu-

dents learn to program. In: 43rd ACM technical symposium on Computer Science Educa-

tion (SIGCSE ‘12). pp. 153-160. ACM, New York (2012)

