
1 

 

Meta-Modeling Knowledge: Comparing Model 
Construction and Model Interaction in Bifocal Modeling 

Tamar Fuhrmann 
Stanford University – TLT Lab  
520 Galvez Mall, CERAS 102 

Stanford, CA, USA, 94305 

tamarrf@gmail.com 

Shima Salehi 
Stanford University – TLT Lab  
520 Galvez Mall, CERAS 102 

Stanford, CA, USA, 94305 

shimasalehi87@gmail.com 

Paulo Blikstein 
Stanford University – TLT Lab  
520 Galvez Mall, CERAS 102 

Stanford, CA, USA, 94305 

paulob@stanford.edu 

ABSTRACT 

In this paper we will examine students’ meta-modeling 
knowledge in the context of their participation in a Bifocal 
Modeling activity. Bifocal Modeling is an inquiry-based 
approach for science learning, which incorporates both physical 
experimentation and virtual modeling. The current study 
combines three separate case studies of students participating in 
different implementation modes of the Bifocal Modeling 
process. Different implementation methods require different 
modeling practices, and we will examine the consequences of 
these practices for students’ meta-modeling knowledge. The 
concern of our investigation will be the ways that students 
critically evaluate scientific models and their understanding of 
the limitations of those models. Data suggest that model 
construction (as opposed to simple interaction) lead to deeper 
meta-modeling knowledge. 

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computers Uses in Education 

General Terms 
Design, Experimentation. 

Keywords 
Education, physical computing, computer modeling, inquiry 
science, meta-modeling knowledge, bifocal modeling 

1. INTRODUCTION 
A considerable body of literature recognizes metacognitive 
knowledge as a key component in learning [8]. Metacognitive 
knowledge enhances students’ awareness of the inquiry process 
by providing them better opportunities to reflect upon their 
progress, which, in turn, permits them to refine their inquiry 
process Given the importance of teaching scientific inquiry in 
schools, curricula should be developed in a way that helps 
students learn not merely about content knowledge in science, 
but also acquire and use metacognitive knowledge when 
participating in inquiry activities.  

Modeling is a core element in science and scientific practices. A 
scientific model is an abstract, simplified representation of a 

phenomenon that focuses on one of the phenomenon’s key 
elements and may be used in the production of an explanation or 
a prediction of that phenomenon [7, 8].  For the scope of this 
paper, we will mainly focus on meta-modeling knowledge, the 
aspect of metacognitive knowledge most crucial  for 
development of scientific models. This type of knowledge is 
defined as the learners’ understanding of how models are used, 
why they are used, and what their strengths and limitations are 
[8]. 

Involving students in the development of scientific models may 
enhance their knowledge of the discipline, as well as their 
epistemological understanding and expertise in building or 
evaluating scientific models. If students’ scientific modeling 
practice proceeds adequately, they may gain a significant 
opportunity to learn about the nature of science as well as an 
enhanced understanding of meta-modeling. In general, however, 
scientific modeling practices have been limited to illustrating 
phenomena, which weakens the epistemic value of such 
modeling [8]. 

This study is an examination, in the context of the Bifocal 
Modeling framework and activities, of different modes of 
implementation in school settings as well as their effects on 
students’ meta-modeling knowledge. We will mainly focus on 
students’ ability to understand the limitation of models. In 
particular, we will investigate the extent to which the active 
(versus passive) participation in the design of virtual and 
physical models influences what students learn from Bifocal 
Modeling activities. Our initial hypothesis is that involving 
students in both conceptualizing and programming models will 
affect their notions about the limitations and usefulness of 
scientific models and ultimately determine how they engage in 
scientific inquiry. 

2. RESEARCH SETTING  
Bifocal Modeling [2, 3] is an approach to inquiry-driven science 
learning that challenges students to build and compare in real 
time physical and virtual models. In these activities, students 
explore a scientific phenomenon such as the properties of gases, 
bacterial growth, or wave propagation by conducting physical 
experiment, constructing a virtual model and connecting the 
experiment and the model in real time. Bifocal Modeling 
includes various distinctive sub-activities as described in figure 
1 [3] 

 

Figure 1: A general structure of Bifocal Modeling activities 
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random movement of gas molecules within the box. We asked 
students to compare the behavior of the hex-bugs in the box with 
the gas molecules in the syringe. Additionally, the students 
could again interact with both physical systems and the virtual 
model and were asked to compare the behavior of the physical 
experiments with the data they gathered from the virtual model. 

 

Figure 4: Gas laws: Hex-bugs box, physical experiment and 
virtual model 

The first and third studies were conducted with 13 students (4 
females and 9 males), ranging from 9th to 11th grades.  The 
second study took place in an afterschool workshop session with 
two female high school students (9th grade). All students were 
given three questionnaires before and after the completion of the 
activity as well as a mid-test. Students were also videotaped 
during all activities, their computer usage was documented with 
screen-capture software, and researchers asked questions and 
kept field notes.  

4. DATA AND DISCUSSION 
Data presented here demonstrates the evolution of the students’ 
meta-modeling knowledge in the three case-studies. The main 
focus is on students’ understanding of the role of scientific 
models and their limitations. 

I. Biology Study (bacterial growth): designing and 
developing a physical experiment and a virtual model 

To examine student’s meta-modeling knowledge, we included 
questions to gauge students understanding of the benefits and 
limitations of scientific virtual models in mid- and post-tests. In 
both mid- and post-tests, students were asked several questions 
about the difference between virtual models and real 
experiments1. The data shows that on the mid-test, 10 out of 13 
students answered that a virtual model of a phenomenon is not 
the same as the phenomenon itself. However, their explanations 
of the differences between a virtual model and a real 
phenomenon were mostly generic and unspecific. Following are 
two quotes from students’ mid-test: 

Student D: “A computer model can make a good estimation but 
for real data, one needs to study the actual bacteria.” 

Student G: “…in the physical experiment we get to see the 
actual thing.” 

In both statements it is clear that the students evaluated the 
models but did not add specific explanations about their 
limitations. Data from the post-test, on the other hand, 
demonstrates that students had acquired more specific 
knowledge about the similarities and differences between a 
virtual model and the real phenomenon. At this point, the 
students’ explanations were much more specific in discussions 

                                                                 
1 “Do you think the virtual model is similar to what is happening 

to bacteria in real life?” and “A computer model of a cellular 
mitosis can simulate the aspect of cellular division quite well. 
However, microscopic observation of actual cellular mitosis 
can improve our understanding. Explain why.” 

of the models’ limitations. For example a few students described 
the “step” pattern in the model’s graph and explained it by the 
lack of randomness in the virtual model. One of the students 
wrote on his post-test: “...I don't think the virtual model is 
similar to what is happening in real life, since ours [the virtual 
model] did not incorporate all of the actions of real bacteria, 
such as colonies…I believe that one reason for these differences 
is that the bacteria in our simulation were not very random.” 

Data show that students in the mid-test regarded the virtual 
model as differing very little from the real phenomena, while 
during the post-test 80% of students had more precise 
explanations about the limitations of the virtual model. 

II. Physics Study (ball and ramp): designing a physical 
experiment, interacting with the virtual model  

In this study, immediately after accomplishing the design and 
construction of the physical experiment, students started 
interacting with a pre-built model in the Algoodo physics 
platform. The Physics project differed from the Biology study in 
that the students did not design their virtual model; nor did they 
list the effective variables and the underlying rules of the 
phenomena observed. After running both the physical 
experiment and the virtual simulation of the phenomena, they 
realized that there are considerable discrepancies between the 
results of the physical experiment and those of the virtual model. 
However, despite their awareness of the discrepancies, it was 
difficult for students to determine their cause. Students had an 
inclination to attribute errors and discrepancies mostly to 
themselves or to other sources of human error rather than to 
limitations of the virtual model as is apparent in student R’s 
conjecture: “Maybe it’s more accurate [the computer model]! 
[…] We had some problems positioning the sensor, but here, in 
Algodoo [the computer model], we do not have these 
problems!” 

III. The Chemistry Study (Gas Laws): interacting with both the 
physical experiment and the virtual model 

In the third case study, students interacted with one pre-made 
experiment and two pre-designed models, rather than designing 
them by themselves. The students’ physical interactions 
included a syringe with a pressure sensor and a physical model 
of a box with tens of “hex bugs,” or micro toy robots whose 
unpredictable and erratic movements and collisions were 
intended to emulate the random motion of gas molecules . The 
students also interacted with a pre-made virtual model of an 
isothermal piston in a gas chamber [6].  

During the first two parts of the activity, students were supposed 
to gather data from the syringe using a pressure sensor and 
compare it with the results of the Netlogo model. During this 
phase of the experiment, students asked no questions, nor did 
they notice the discrepancies between these two data sets. When 
asked explicitly to compare the graphs (the data set gathered 
from the physical experiment against the data from the virtual 
Netlogo model), the students tended to place greater trust in the 
virtual model. In every case during this phase of the project, the 
students attributed the errors and limitations exclusively to the 
physical experiment—none of them questioned the computer 
model. They would state either, “our sensor is not accurate,” or 
“we did not press the syringe correctly.” 

In the next step, students were introduced to a physical model of 
the “hex-bugs” box. The idea was to explain the relation 
between volume and pressure in a simple micro-level 
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experience, using the micro robots as gas molecules, and the box 
as a container that can change its volume. Note that the hex-bugs 
model was designed to look exactly like the corresponding 
Netlogo model: a box with randomly moving particles, which 
collide with one another. Interacting with “bugs” appeared to be 
a much more appealing task for them. Compared to their 
interactions with on-screen models, when students worked with 
a physical model we noticed more self-initiated discussions 
between students about similarities and differences between 
those models.  This activity led students’ to engage in 
discussions regarding three main themes:  

1. The constructional limitations of the “hex-bugs” box model 
and suggesting approaches to improving the model. For 
example: “The number of hex-bugs is limited, we need to 
add more bugs”, or “The bugs get on top of each other, let’s 
change their shape into a square or program them to bounce 
off each other”, or “they get stuck at the corners, let’s 
change the shape of the container and make rounded 
corners”.  

2. The conceptual limitations of the hex-bugs box model. 
Students compared the behavior of the hex-bugs to the 
reality of molecular collisions. They also discussed the 
discrepancies between the bugs and gas molecules. For 
instance, one student talked about the way molecules move 
in space: “Gas molecules work in three dimensions, whereas 
hex-bugs work in two.”  

3. Similarities between the model and real phenomenon.  
Students also came up with some ideas about similarities 
between hex bugs and gas molecules, For example: “They 
both (bugs and molecules) move randomly, move fast until 
they bump into each other, hex-bugs push on their 
surroundings in a similar way to how gas provides force 
against their container.” 

5. CONCLUSION 
Throughout this paper, we have suggested that students can 
develop a refined understanding of scientific models and their 
limitations through participation in Bifocal Modeling activities, 
yet this benefit requires specific design elements to be in place. 
In the course of bringing the Bifocal Modeling methodology 
into the classroom, we examined different implementation 
modes of conducting activities, documented in this paper in 
three separate case studies. All three cases utilized a virtual 
scientific model; however, only in the first study, which 
involved bacterial growth, did students both design (i.e., 
conceptualize) and develop (i.e., program) their virtual model. In 
that study, students directly addressed the limitations of their 
virtual models, which did not occur in the other two studies (the 
studies of the laws of motion and the gas laws). Involving 
students in both conceptualizing (designing) and programming 
(developing) a virtual model appears to support students' meta-
modeling process to a greater extent. Active participation in the 
design and construction of the model helps students become 
aware of the underlying assumptions in their virtual models. 
Hence, students were able to understand the limitations of their 
own models, and even explain how to address some of them. We 
should note that, in the second study (the use of the ramp and 
balls to study Newtonian physics), students did not design the 
virtual model conceptually, so they did not have the opportunity 
to focus on the underlying assumptions and rules of the model. 
This may be the reason that they were unable to acknowledge 
the limitations of the virtual model. In cases of discrepancies 
between the physical phenomenon and the virtual model, 

students mostly tended to attribute those discrepancies to human 
error and the shortcomings of the physical experiments. 

In the third case study (the investigation of the gas laws), neither 
the virtual model nor the physical experiment were designed by 
the students. During their interaction with the on-screen models, 
none of the students criticized any of those models or suggested 
possible improvements—their stance as “expert-made models” 
led students to believe that they were infallible. It was not until 
we presented students with the hex-bugs model, which was a 
physical “rendering” of an on-screen model, that students began 
to critically evaluate the virtual model. We suggest that this 
critical insight into the limitations of the virtual model may arise 
from students’ perception of the limitations of its mechanical 
analogue. Even though it was no more or less adequate than the 
computer model and followed a very similar mechanism, the 
hex-bug box was not perceived by the students as “perfect”; 
consequently, as in the first study, they had sufficient confidence 
to evaluate its accuracy and to criticize it. Note that most of 
students’ critiques of the hex-bug model would also apply to the 
on-screen version of it, which again points to the essential 
similarity of the two models. . 

The preliminary results of these three case studies suggest that 
having students involved in designing and developing scientific 
models (rather than just interacting with pre-built ones) 
enhances their understanding of scientific models and their 
limitations. On the other hand, when students are provided with 
pre-made models, the affordances of the models as well as the 
context of the activity may affect students’ critical evaluation of 
them. When students perceive a model as imperfect, they tend to 
more carefully evaluate the model and better address its 
limitations, leading to deeper learning about the phenomenon 
itself. 
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