
56

56

3	 Computing Education
Literature Review and Voices from the Field

Paulo Blikstein and Sepi Hejazi Moghadam

Dedicated to Francisco Walter Durán Segarra (in memoriam), Ecuadorian
polymath, professor, and educational researcher, an ahead-​of-​his-​time mind who
never gave up the fight for a more emancipatory, meaningful, and democratic
education.

3.1  Introduction

In 1967, Seymour Papert, Cynthia Solomon, and Wally Feurzeig
created the Logo computer language, the first designed for children (Papert,
1980) –​ an event widely considered as the beginning of computing educa-
tion (CEd).1 In a time when computers cost millions of dollars and occupied
entire rooms, teaching computing to children, while visionary, was a hard sell
for school systems and policy-​makers. From the mid-​1970s to the early 1990s,
CEd slowly penetrated schools worldwide. Despite a decade of popularity in
the 1980s, it never reached as deeply into the educational mainstream as Papert
and his colleagues wished. Since the mid-​2000s, however, there has been a
pronounced shift in the focus on science, technology, engineering, and mathem-
atics (STEM) education, and CEd is at the forefront of this process (National
Research Council, 2012). As computational technologies have become inexpen-
sive and pervasive in our lives, the demand for an educated and technologically
literate labor force has continued to increase (Noonan, 2017; US Department of
Labor, 2007). This is not merely about the labor force, but also about citizenship.
The need for children to become future producers of technology –​ fluent in the
medium of our time, instead of merely consumers –​ has become a major focus
for policy-​makers and researchers. Today, educators and CEd advocates are
pushing ahead with plans to add computing to the list of topics that all students
should study (K–​12 Computer Science Framework Steering Committee, 2016).

Other catalysts driving the mainstream acceptance of CEd include the launch
of the Scratch, Blockly, NetLogo, and Alice programming environments; the
launch of organizations such as the Computer Science Teachers Association
(CSTA; an international body founded by the Association for Computing
Machinery [ACM]), the rise of the maker movement and fablabs (Blikstein,
2013, 2018); the creation of organizations providing CS learning opportunities

	1	 John Kemeny and Thomas Kurtz (Dartmouth College) created the BASIC programming
language in 1964, but Logo is used as a landmark because of its comprehensive focus on all
segments and age levels of education, especially children.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 57

57

such as Code.org, Black Girls Code, Girls Who Code, and others2; and the
rollout of national programs such as CS4All in the USA. As a result, there is an
almost overwhelming demand from school systems worldwide for research and
implementation guidelines, one that the relatively small CEd research commu-
nity is simply not able to meet (Guzdial, 2017). The newness of the discipline
is also an important factor. For example, while the US National Council of
Teachers of Mathematics (NCTM) was founded in 1920, and its science coun-
terpart, the National Science Teachers Association (NSTA), was formed in 1944,
CSTA was not launched until 2004. When NCTM and NSTA were formed,
school infrastructure was already in place for these disciplines, thousands of
mathematics and science teachers were teaching in schools across the USA, and
teacher colleges supported a strong pipeline for more. CEd does not have those
advantages today. The current focus on CEd has also generated much discourse
regarding its purpose. Is the rationale for CEd to fulfill job market needs, pro-
mote personal empowerment, teach children to code, develop students’ fluency
in a new literacy, address historical educational inequalities, or some combin-
ation of all of the above?

The goal of this chapter (which is based on a longer report originally commis
sioned by Google3,4) is to better understand the state of CEd by using a methodo-
logical innovation. Instead of only examining the published literature, we also
interviewed some of the main voices in the field, inquiring about two topics in
particular: the multiple rationales for teaching computing and the obstacles for
sustainable implementation. With these goals in mind, this chapter summarizes
interviews conducted with several leading researchers and practitioners, in add-
ition to providing an examination of literature reviews and articles.

3.2  Methods

We utilized three main data sources for this chapter: interviews, lit-
erature reviews, and analysis of papers recommended by the interviewees.
For the interviews, we selected leaders in the field from various universities,
institutions, and organizations, trying to balance intellectual traditions, aca-
demic backgrounds, and expertise. The selection focused mostly on the USA, not
because it is representative of what happens in other countries, but mostly to have
a more complete picture of CEd in one country. The final group of interviewees
consisted of 14 people: Matthew Berland (University of Wisconsin-​Madison),
Leah Buechley (Rural Digital), Michael Clancy (University of California,

	2	 There is a large number of such organizations, many focusing on underserved populations: Black
Girls Code, Girls Who Code, Girls Code it, CoderDojo, Technovation, and Yes We Code.

	3	 Available at https://​services.google.com/​fh/​files/​misc/​pre-​college-​computer-​science-​education-​
report.pdf

	4	 Stanford University has strict rules to avoid conflicts of interest or bias in reports written for
private entities. The original report was created following those rules.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

58

58

Blikstein and Moghadam

Berkeley), Andrea “Andy” diSessa (University of California, Berkeley), Sally
Fincher (University of Kent), Shuchi Grover (formerly SRI International),
Mark Guzdial (Georgia Institute of Technology), Mike Horn (Northwestern
University), Jane Margolis (University of California, Los Angeles), Mitchel
Resnick (Massachusetts Institute of Technology), Sue Sentance (King’s College,
London), Ben Shapiro (University of Colorado, Boulder), David Weintrop
(University of Maryland), and Pat Yongpradit (Code.org).

All invited interviewees accepted to be interviewed, except one professor,
who nominated another scholar in his own department (Michael Clancy,
University of California, Berkeley), and Andrea diSessa, who preferred to
send an in-​preparation paper instead (the paper is used in this chapter in lieu
of an interview and is listed in the references). All participants were given the
option of anonymity and none opted for it. After the first complete draft was
finished, all 14 interviewees were given the opportunity to fully review the
text and suggest further changes, which were individually considered for the
final version.

We used a semi-​structured protocol for the interviews that included questions
about the relevance and importance of teaching computing, the main research
findings in the field, and research, policy, and implementation agendas for
years to come. The interviews were conducted remotely by the first author via
videoconference, audio recorded, transcribed in their entirety, and analyzed
using a grounded coding approach. The principal themes extracted from the
initial coding were: (a) teacher preparation; (b) policy and scale-​up; (c) cur-
riculum development; (d) cultural, diversity, and equity issues; (e) pedagogy;
and (f) historical aspects of CEd. These categories informed a further refining
of the coding, so the data were recoded for more fine-​grained topics, resulting
in approximately 1,000 excerpts grouped into 130 sub-​codes. Those were then
recategorized in terms of the six initial themes and informed the structure of
the analysis. For the purposes of this chapter, we will focus mostly on two
of those six main clusters of: the rationales for teaching computing and CEd
implementation.

The literature was selected using a combination of recommendations from
the interviewees, well-​established policy documents such as the CSTA K–​12
Computer Science Standards (Seehorn et al., 2011) and the K–​12 Computer
Science Framework (K–​12 Computer Science Framework Steering Committee,
2016), foundational works in the field, and existing literature reviews. We used
the literature to add a layer of peer-​reviewed research to the topics extracted
from the interviews, and triangulated research findings across interviews and
the literature.

We chose this hybrid format (interviews and reviews) to simultaneously
capture well-​established facts and findings, but also novel information that
has not yet made it to the publication venues in the field. Also, some of
the important challenges and issues in CEd often do not show up in peer-​
reviewed publications because many active members of the community are
also tool developers instead of researchers –​ so their work could not be
entirely captured in a traditional literature review. This combined use of

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 59

59

interviews and literature offered a more comprehensive view of the state of
the very young and dynamic field of  CEd.

We will reference the interviews using the conventional reference format
for personal communication (it might help readers to keep in mind that most
references from 2017 are, in fact, the interviews).

3.3  Findings: Rationales for Justifying CS Education

The first theme emerging from the interviews and literature, and one of
the main topics of this chapter, was the differing reasons for teaching CS and their
considerable consequences for CS implementation programs. Similar to a recent
study by Vogel, Santo, and Ching (2017), we found that the interdisciplinary
nature of CS brings together very different stakeholders and views. CEd includes
professionals from different academic cultures and professional allegiances: uni-
versity professors, K–​12 educators, CEOs of technology companies, entrepreneurs,
government officials, and diversity and equity advocates. Not surprisingly, the
data from the interviews and literature revealed many different justifications for
why CS should be taught in public education systems (e.g., diSessa, 2000; Wing,
2006). These rationales can be expressed as four distinct positions:

•	 The labor market rationale: Labor market changes and the need to sustain a
competitive economy are the main driving forces for this rationale. Some con-
sider that CS knowledge will be useful not only for professional programmers
but also in a variety of twenty-​first-​century non-​technical jobs, thus univer-
sally valuable for all professions.

•	 The computational thinking rationale: The argument for “computational
thinking” is that computer scientists’ ways of thinking, heuristics, and
problem-​solving strategies are universally important, and would transfer to a
variety of knowledge domains and everyday problems. It would also support
the development of students’ higher-order thinking skills.

•	 The computational literacy rationale: Computational literacy is not a new skill
or a class of problem-​solving strategies, but a set of material, cognitive, and
social elements that generate new ways of thinking and learning. It enables
new types of mental operations and knowledge representations, creates new
kinds of “literatures,” makes it possible for people to express themselves in
new ways, changing how people accomplish cognitive tasks.

•	 The equity of participation rationale: CS knowledge will be required for the
best and most creative jobs, for civic participation, and for understanding the
impact of computation on society. Additionally, since our cognitive capabil-
ities will be limited by our ability to utilize computation, equity of participa-
tion in CEd becomes the central concern, and is one of the most significant
gaps in research and implementation.

Making these four rationales explicit is important because they drive the way we
write curricula, train teachers, and implement CEd in schools. Interviewees pointed
out that the public’s lack of awareness about these different viewpoints –​ and

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

60

60

Blikstein and Moghadam

the ways they are similar, dissimilar, complementary, and compatible –​ must be
addressed (e.g., Buechley, 2017; Resnick, 2017).

3.3.1  The Labor Market Rationale

Changes in the global labor market have been a major driver of the efforts to
teach CS in schools. This rationale is primarily related to the demands for more
workers with new skill sets and is frequently championed by industry leaders
and policy-​makers. The labor market argument comes in two chief forms. The
first cites the hundreds of thousands of open jobs in CS (Google LLC & Gallup
Inc., 2016; Grover & Pea, 2013) and notes that this number will increase in
years to come, with data science and artificial intelligence becoming mainstream
fields relevant across many industries. Similarly, it is argued that the economic
productivity or contributions of a country will be determined by its capacity to
generate more scientists and engineers. CEd can presumably contribute to this
vision by fixing the “leaky” STEM pipeline and driving more students to pursue
CS careers. However, Grover and Horn point out that in grades K–​8 especially,
this concern with jobs might be misplaced:

In elementary school, students and teachers are definitely not thinking about
jobs. It is about what are the foundational knowledge and skills that children
should have? At the middle school level, even though it is not a jobs argu-
ment, I think there is an identity argument there. This is especially relevant to
computing because there are so many stereotypes associated with it.
(Grover, 2017)

We have gone a little too far on the commercial end of the spectrum, we have
become preoccupied with training the next generation of engineers, these eco-
nomic motivations are outweighing the computational literacy ideas.
(Horn, 2017)

The second form the labor market argument takes is a subtler one. It argues
for more CS knowledge embedded in all careers, instead of simply training more
programmers. Several of the interviewees mentioned that while professional
programmers will be necessary, the need could be restricted to a relatively small
number of positions that are highly specialized (Guzdial, 2017; Resnick, 2017;
Shapiro, 2017). Some reports suggest that only about 6 percent of the work-
force will need to do coding with the scope and specialization of professional
programmers (Noonan, 2017). The greatest demand would not be for profes-
sional programmers, but for other professionals who will have to use CS and
programming for automating spreadsheets, programming queries, accessing
online databases, using data-​mining software tools, and operating physical com-
puting devices in interactive art or home automation.

3.3.2  The Computational Thinking Rationale

The second argument for teaching CS derives from the concept of
“computational thinking” (CT), as put forth in a position paper written

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 61

61

by Jeanette Wing (2006). Wing proposed that computer scientists’ ways of
thinking, heuristics, and problem-​solving strategies are universally important
both for applying computing ideas to do work in other disciplines and for
applying computing ideas in everyday life. Examples are the ability to use
abstractions and pattern recognition to represent problems in new ways, to
break down problems into smaller parts, and to employ algorithmic thinking.
With 3,500 citations (according to Google Scholar as of April 2018), the pos-
ition put forward by Wing has played a critical role in shaping the world of
CEd. Her paper and her influential position as a National Science Foundation
(NSF) officer helped reinvigorate the field. Some researchers, however, are
skeptical about how well students transfer CS knowledge to everyday life and
general problem-​solving. diSessa (2018) mentions that there have been several
attempts over the last 100 years to teach children transferable problem-​solving
or higher-​order thinking skills (HOTS) using mathematics, Latin, or Greek,
but these endeavors often failed. Guzdial (2017) mentions several studies on
the transfer of CEd knowledge and points out that generally “students fail
to apply even simple computing ideas to fairly simple problems.” Yongpradit
further notes that:

CEd is not immune to the misconceptions about high-​level transfer. I know
that there are advocates … saying that computing can improve general critical
thinking skills. That’s not supported by research. It will not magically improve
your math scores.
(Yongpradit, 2017)

Because Wing’s original ideas are still influential in the field, the need for
more empirical evidence and the absence of a more definitive unpacking of
the term CT are considered to be major issues in CEd –​ after all, would the
“ways of thinking” of computer scientists transfer to other domains and
contexts?

However, the definition of CT has been evolving over the last few years, and
steering away from the original one put forth by Wing, as Grover notes:

The definition of CT has been evolving since Wing, and in its evolution it has
broadened to encompass aspects of CT concepts, practices, as well as learners’
dispositions and perspectives, perhaps fueled by a genuine desire to broaden
participation, thus including aspects such as creativity, collaboration, and
communication in practices of CT.
(Grover, 2017)

CT is further discussed in Chapters 17–​20 of this Handbook.

3.3.3  The Computational Literacy Rationale

With more than 1,100 citations (according to Google Scholar as of April 2018),
Andrea diSessa’s book Changing Minds is the most established account of the
idea of “computational literacy” (diSessa, 2000). In the book, and in recent
publications (diSessa, 2018), he explains how different computational literacy is

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

62

62

Blikstein and Moghadam

from the original definition of CT (a similar discussion appears in Wilensky &
Papert, 2010).

Learning to use a new medium takes effort. The printing press was a huge
leap in human history, but that leap did not happen until many more people
became literate. A printing press is not of much use unless authors know how
to write and your audience knows how to read. Achieving computational
literacy in society means that people can read and write with computation,
which includes an ability to read and write computer programs.
(diSessa, 2000)

I view computation as, potentially, providing a new, deep, and profoundly
influential literacy –​ computational literacy –​ that will impact all STEM dis-
ciplines at their very core, but most especially in terms of learning.
(diSessa, 2018)

diSessa claims that computational literacy is not simply a new job skill or gen-
eric CS-​inspired problem-​solving strategy, but a set of material, cognitive, and
social elements that generate a new way of knowing, thinking, learning, and
representing knowledge. A new literacy makes new types of mental operations
and knowledge representations possible, creates new kinds of previously non-
existent “literatures,” and changes how people interact with each other and use
digital devices when they are accomplishing cognitive tasks. He also mentions
that there is a semantic confusion between computational literacy versus terms
like digital literacy, computer literacy, or information communication and tech-
nology (ICT) literacy. These latter terms refer to the competent use of different
computational devices and technologies. Computational literacy, conversely, is
concerned with how computational media can change the way we know, learn,
and think (in contrast with the focus on problem-​solving or HOTS).

diSessa also argues that concepts in science and mathematics can be made sim-
pler using computational representations. For example, velocity and acceleration
are simple to understand algorithmically, but unnecessarily complex to learn using
traditional algebraic representations. Chemical processes such as diffusion, given
their probabilistic nature, are convoluted when represented in algebraic terms, but
very simple to learn using computational tools such as agent-​based models (e.g.,
NetLogo; Wilensky, 1999), in which students can program the behavior of indi-
vidual atoms. The argument for computational literacy extends beyond the need
for teaching programming languages. It makes the claim that several disciplines
could be fundamentally transformed if taught using computational tools, in the
same way that text literacy changed the teaching of so many disciplines centuries
ago.5 Sentance, Resnick, and Horn also stress that computational literacy is multi-
faceted, and more than just learning CT or programming concepts:

I think computational thinking skills exist … I think we just have to be careful
about thinking that computing is only computational thinking. CS … involves

	5	 Text literacy fundamentally changed how we accomplish cognitive operations –​ for example,
it acts as external memory, it is shareable, and it is permanent. diSessa and others claim that
computational literacy could have the same revolutionary consequences.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 63

63

modeling and design and creativity, more than just the cognitive elemental
thinking skills. That is what we need to teach in K–​8. We need to teach the
whole subject and be cautious of being too narrow in what we are offering in
the curriculum in school.
(Sentance, 2017)

Gaining a literacy is a matter of developing your thinking, your voice, and
your identity … The reason for learning to write is not just for doing practical
things but being able to express your ideas to others. Computation is a new
way of expressing ourselves and it’s important for everyone to learn … If you
want to feel like a full participant in the culture, you need to be a contributor
with the media of the times.
(Resnick, 2017)

It is about supporting computation in many different genres or niches. As
a poet, the way you use computation might be very different than a jour-
nalist, a researcher, or somebody who works in government. Just like we
have different forms of literacy, we might have different forms of computa-
tional literacy.
(Horn, 2017)

However, as diSessa states, discussions about the role and importance of CEd
are far from over, and these views should all be earnestly considered with their
implicit contradictions:

The labor market view and the computational thinking view contain at least
implicit criticisms of the computational literacy view. The former might think
that immediate and practical economic effects are more important, and the
latter suggests that computational literacy is diffuse, hard to implement, and
might insist that high-​order thinking skills do exist, so these perspectives
should not be ignored.
(diSessa, 2018)

Some interviewees pointed out that the boundaries between CT and com-
putational literacy are not well-​defined. While Grover (2017) states that new
definitions of CT have been evolving to include, for example, creativity and col-
laboration, formerly mostly associated with computational literacy, Guzdial
(2017) worries that these new CT definitions “are going too broad,” and Resnick
notes that the definition of CT “out in the field” is still very much connected to
the original one as stated in Wing’s (2006) paper. Computational literacy is fur-
ther discussed in Chapters 18 and 19.

3.3.4  The Equity of Participation Rationale

Several interviewees mentioned equity as their central concern in CEd, arguing
that it has traditionally been a side issue in the field and one of the most signifi-
cant gaps in research and implementation. There are two main issues related to
the topic:

•	 Understanding the impact of computation on society, and
•	 Ensuring equity and diversity in participation.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

64

64

Blikstein and Moghadam

The K–​12 Computer Science Framework (K–​12 Computer Science
Framework Steering Committee, 2016) also recognized equity and broadening
participation as core issues in CEd. Students excluded from CEd may struggle
to fully participate in twenty-​first-​century society along multiple dimensions.
Not only will the best and most creative jobs require CS knowledge, but our
cognitive capabilities to solve problems will be limited by our inability to utilize
computation fully. Even traditional forms of civic participation will require an
understanding of Computing. As Buechley stated:

We live in a computationally mediated world, and it is important for people to
have an understanding of how computational systems work and the role that
they play in those systems, how those systems impact their lives, our democ-
racy, the economy, and the way we socialize and interact with people.
(Buechley, 2017)

Several interviewees gave examples of how computing will become increas-
ingly crucial for civic participation and informed decision-​making. These
examples include knowing what algorithms are, how computational tools can
manipulate social media, how to participate in a social discourse mediated
by algorithms, and how to make sense of job displacement due to automa-
tion. It is also important to be aware of the presence and consequences of
technologies such as machine learning (ML) and artificial intelligence (AI)
in a number of everyday devices and experiences, understanding how much
information we divulge (sometimes unknowingly) about ourselves, and being
aware of the ways in which bias can get built into technologies that influ-
ence critical decisions such as prison sentencing, mortgage allocation, and
the deployment of neighborhood policing resources (O’Neil, 2016; Shapiro,
2017). The comprehension of the rapidly evolving landscape of devices and
tools that are key for active participation in modern society is also central to
this argument. Students who do not fully understand these issues risk being
more easily manipulated as consumers, voters, and citizens, and more vul-
nerable to cybercrime. They also are less likely to have access to leadership
positions and high-​status jobs and are more likely to be on the sidelines of
future societal change.

The interviewees also noted that Computing drives innovation across many
disciplines and industries and that the resulting changes have had both an eco-
nomic and a sociological impact. Some also said that allowing students to
explore their social and cultural concerns using computing helps motivate and
engage them and makes Computing relevant to their lives, especially in diverse
populations (Margolis, 2017). Buechley (2017) adds that when you put com-
puting in contexts that can be compelling and exciting to different groups of
people, “you get diverse populations to show up and participate,” and stresses
the importance of making conscious, deliberate space for that to happen. Many
interviewees noted that private and more affluent schools will most certainly be
able to offer CEd programs with high complexity, while less affluent or public
school systems will only offer very simplified versions:

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 65

65

Private schools do not do just generic education. They have kids working
on portfolios. They have children doing internships. They have kids doing
projects and making it relevant to them … Standardized education which has
no connection to kids’ lives is what is often given to poor kids.
(Margolis, 2017)

[I was] working first in informal settings and then in recent years, I have moved
more in the formal space. I saw it as being more relevant because that is now
seen as a way to level the playing field and make sure that all children get it, not
just those that happen to be fortunate to get it through after-​school experiences.
(Grover, 2017)

Grover noted that the Obama administration’s naming of the national CEd
effort as “Computer Science for All” when it was announced in January 2016
supported this equity-oriented perspective:

This of course came as a result of notions the community grew to accept over
the previous 5 years … CSForAll is now a well-​used term that captures this
“equity of participation” notion.
(Grover, 2017)

Sentance (2017) stresses the importance of making CS mandatory in all schools,
for all students, not as mere “exposure,” but as a way to avoid self-​selection. The
interviewees also noted that the lack of a diverse CS workforce results in the
design of products and services that cater to a very narrow range of people and
problems, thus perpetuating inequality. Researchers concerned with the equity
argument also posit that we could see a much more perverse version of the
“digital divide” in the years to come if immediate and intentional actions are
not taken to address these inequities while we are still in early design stages of
CEd. Equity issues are further discussed in Chapters 16 and 24.

3.4  Sustainable Implementation and Systemic Obstacles

The second cluster of findings stemming from the interviews and the
literature relates to key components needed across the CEd system to support
wider and more effective implementation. The “system” we define includes the
various interrelated institutions and mechanisms that shape and support CEd
teaching and learning in the classroom.

The six key components of CEd implementations reviewed in this section are
equity, scaling, quality of implementation, pluralism, curriculum, and teacher
development. It is difficult to focus on any particular component without
considering how it is influenced by –​ and how it in turn influences –​ the other
components. For example, what students learn is clearly related to what they
are taught, which itself depends on many elements: the instructional materials
available in the market; the curriculum adopted locally; teachers’ content and
pedagogical knowledge; how teachers elect to use the curriculum; the kinds
of resources, time, and space that teachers have for their practice; what the

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

66

66

Blikstein and Moghadam

community values regarding student learning; and how local, state, and national
standards and assessments influence instructional practice.

I am not attempting to provide a full discussion of all possible influences on
CEd; rather, I focus on the themes that emerged from the data and how they
might contribute to a more coherent and inclusive implementation of CEd.

3.4.1  Equity and Broadening Participation

Several interviewees mentioned broadening participation in and changing
perceptions of CS as perhaps the most important challenges for our commu-
nity. Berland, Buechley, Margolis, Sentance, and others stressed the striking con-
trast between what happens in Computing classrooms in affluent schools and
in less affluent schools. Almost all of the interviewees expressed concern with
the unequal presence of programming in public schools, the quality of instruc-
tion, and the unconscious bias of some educators and counselors regarding who
is “suited” to take the Computing classes. They also noted that while affluent
schools are more likely to offer comprehensive Computing programs for their
students, most public districts are ill-​equipped to offer anything more than very
brief, standardized experiences, which they fear could give school administrators
and teachers an incorrect metric for CEd adoption and distract them from
implementing more robust programs in their schools. The interviewees also worry
that the numbers of children reached as advertised by nonprofits and industry
providers give the impression that the “mission has been accomplished,” whereas
most agree that we are still very far from providing CEd to all students. At least
three researchers also noted that funding currently provided to large national
organizations would be better directed to research institutions or smaller, more
local nonprofits. But Yongpradit (2017) noted that national organizations can be
a channel for funding to smaller organizations.

Regarding broadening participation, most interviewees favored programs that
make learning Computing more attractive by focusing on personal expression
and creativity, especially at the K–​8 level. They also agreed on the importance
of culturally relevant curricula that support diverse ways of approaching CEd
and diverse ways of expressing one’s knowledge. Buechley (2017), for example,
mentioned that computer scientists and engineers tend to discount culture and
cultural relevance as key factors in learning and in tool design. In her work, she
instead focuses on creating new types of clubhouses and computing cultures that
speak to these diverse practices. Michael Clancy also advocated for CEd that
incentivizes meaningful engagement:

Students will be more motivated to work if the assignments allow creativity,
and allow the student to relate to his or her experience. Part of that would
be more flexible tools that allow a student to make better use of his or her
experience. What I would like to see is some way to have a broader scope and
interest of activities.
(Clancy, 2017)

Some identified the need to make CEd mandatory for all students as a means
of ensuring equitable participation. Sentance (2017), for example, argued that

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 67

67

“if we don’t make computing mandatory, we know from previous experience
that self-​selecting groups of people will choose computing … so we have a
responsibility to offer that to all children and to reach everybody.” Yongpradit
(2017) stated that schools should at least be required to offer CEd, and that we
should make CEd courses available permanently for students in public schools.
Guzdial (2017) expressed concern that some states are trying to implement
“CS4All” without an explicit focus on underserved groups. He points out that
affluent schools will be able to move quickly to provide Computing for their
students, while less affluent schools will struggle with financial limitations, fur-
ther exacerbating the “coding divide.” Margolis also noted that, while the “CS
for California” campaign has an equity agenda:

The rush to scale and the pressure to put curriculum and teacher profes-
sional development (PD) online will possibly have dangerous unintended
consequences for the issue of equity … The learning partnership of teachers
and of researchers needs to become part of a dynamic iterative cycle for con-
tinuous improvement … For programs to sustain themselves, to change the
culture of the schools so that teachers are supported to have active, engaged,
inclusive classrooms, for programs to be fully embraced by the districts them-
selves. It is the slow work of relationship building and learning together that
is required. For this to happen there also needs to be a holistic awareness of
all the educational issues in schools that continue to threaten equity. CS in
schools does not exist on isolated islands. All of the large issues impacting
education, such as the move for privatization, de-​professionalizing teachers,
and school tracking will affect our broadening participation in the computing
mission.
(Margolis, 2017)

3.4.2  Scaling and Assessment

Buechley, Shapiro, Berland, and other interviewees expressed concern about
traditional forms of school reform taking over the implementation of CEd.
Specifically, they noted that fixed curricula, standardized assessments, and
inflexible teacher training programs do not foster real scientific or mathematical
thinking in students (National Research Council, 2006, 2012) and have a ques-
tionable track record for motivating students to pursue STEM careers (Maltese
& Tai, 2011). For Buechley (2017), one dominant narrative around CEd is that
“we need to figure out the concepts, and teach them in the right way in a fixed
curriculum.” She disagreed with this narrative, however, and instead advocated
for a perspective in which motivation, engagement, personally relevant projects,
and culturally aware curriculum design take precedence. According to Buechley,
CEd lends itself especially well to projects and interdisciplinary work that
connect programming to art, design, biology, or mathematics:

Connecting computation and computing to different practices, which some-
times coincide with really different ways of approaching and making sense
of the world, is the most powerful way that you can engage different kinds of
people in computing … As one example, I have been connecting computation to
textile crafts, textile design, and fashion design, and I have found that through
doing that, you can dramatically change the gender participation ratios. You

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

68

68

Blikstein and Moghadam

can get lots of young women to engage enthusiastically with computing in a
way that they just do not do in more traditional computing contexts.

Computer science is a fundamentally creative discipline. You construct things
when you write a computer program. And in that sense, it’s really distinct
from mathematics or science. That is a distinction that is not fully appreciated
and made sense of, but is very powerful and important.
(Buechley, 2017)

Berland expressed a similar concern:

There are very few subjects in which students feel like they can make a change in
the world and they can express their independent selves. I think their ability to
make their own games, make their own art, make them in ways that are shareable
with code, is really powerful. [Instead of giving students the right answer] it is
better to create safe spaces to fail, to play, to tinker … This is where you get the
bang for the buck. That’s where the learning happens. Another truism of edu-
cation is that things are driven by the ways that they are assessed. If you assess
people for knowing this or that keyword in C++,6 then that’s what you’re going
to get and that’s not particularly valuable, but if you assess people on their ability
to teach each other complex concepts, that’s what you’re going to get.
(Berland, 2017)

Fincher (2017) cited the UK’s Project Quantum7 as an example of an explicitly
research-​based project that combines scholarly work, practical utility, curric-
ulum scaffolds, and teacher PD.

3.4.3  Reliance on Surface-​Level, Low-​Quality Solutions

Another topic that was mentioned by many interviewees as a systemic obstacle
was related to the pace and depth of many of the current CEd implementations,
pointing to the fact that many seem to be superficial and overly simplified,
especially in public education. Margolis expressed concerns about the speed at
which they are being developed and put into classrooms, and argued that this
approach has unintended educational consequences, especially for members of
underrepresented groups:

[The idea of many programs is] ship it out. Get it out there and we will see if there
are bugs in it, right? That has some real potential dangers in education because
you put something online and the school district says, “Okay, we’re going to do
computing online,” and then all of a sudden the girls and a lot of the students of
color don’t do well, and then the principal says, “See? Our kids are not up for com-
puting. They didn’t do well. They’re not interested.” In fact, they just experienced
horrible instruction, and so they get turned off, but in their minds they’re not cut
out for it, and in the minds of the principals they’re not cut out for it.
(Margolis, 2017)

Grover voiced a similar concern. She has been observing and researching citywide
implementations in the USA and examining the quality and depth of the projects.

	6	 C++ is a very popular professional programming language.
	7	 http://​community.computingatschool.org.uk/​resources/​4382/​single

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 69

69

She noted the simplicity of the projects she observed and the need to more deeply
engage groups that have been historically underrepresented in Computing:

Almost no one uses Boolean logic. They use variables but just as a count
or a score. You barely ever see expressions with variables being used or you
will rarely see a loop with a terminating condition that is controlled by a
Boolean expression with variables. Also, I read this paper from Yasmin Kafai
and Deborah Fields where they analyzed the Scratch community projects
[in 2012].8 Most children stayed at the shallow end, they used the simplest
constructs.
(Grover, 2017)

Shapiro (2017) voiced concerns about the concentration of resources in just
a few CEd organizations, which could lead to “very homogeneous curricula/​
programs which would move us in the opposite direction” from many of the
progressive approaches discussed in the CEd community. Similar concerns have
been voiced by many prominent educators in light of large-​scale implementations
in many US cities. As those implementations roll out, the quality of instruction
has often been criticized as superficial, stifled, and insufficient to create fluency.
Gary Stager observed:

I wish I had 1 cent for every educator who has told me that her students “do
a little Scratch.” I always want to respond, “Call me when your students
have done a lot of Scratch.” The epistemological benefit of programming
computers comes from long intense thinking. Fluency should be the goal.
(Stager, 2017)

One of the paths to address these issues is the creation of partnerships
between researchers and governments, since government officials need
support in scaling efforts in order to go beyond oversimplified solutions.
Guzdial (2017) is currently helping many states conduct landscape surveys9
to determine the state of CEd in different parts of the country. He contends
that policy decisions and coordination between different stakeholders would
be much easier if landscape surveys were standard operating practice,
as they allow states to gauge the growth of CEd offerings, PD programs,
and enrollments. Yongpradit (2017) also noted that federal and state-​
level organizations urgently need technical assistance around creating
certifications, growing the CEd teacher pipeline, and implementing curricula.
Because CEd is such a new field, there are too few trained professionals and
specialized organizations that can offer those services, leading to simplified
and superficial implementations. But the issue of superficiality is also related
to funding: Yongpradit expressed concern with current funding levels, noting
that CEd requires more PD, standards development, and support for task
forces to create implementation plans.

	8	 The paper examined data from a subset of about 5,000 users in January 2012 (Fields, Giant, &
Kafai, 2013).

	9	 http://​ecepalliance.org/​resources/​landscape-​reports

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

70

70

Blikstein and Moghadam

3.4.4  Pluralism in CEd: Exploring New Domains and Tools

Another systemic issue raised by many interviewees and the literature was the
importance of allowing for different ways of doing Computing, in terms of tools,
programming languages, developmental levels, and approaches to organizing
one’s practice. In 1990, Sherry Turkle and Seymour Papert published an influ-
ential paper on epistemological pluralism, in which they described a study where
children engaged in programming in a variety of non-canonical ways that were all
ultimately successful (Turkle & Papert, 1990). Even though some children were
violating traditional programming practice (the “bricoleurs”), they were doing so
in a personally meaningful way that allowed them to create a strong connection
with programming. Echoes of this influential paper were heard in almost all the
interviews, and the principle of epistemological pluralism appears to have taken
hold in CEd at the K–​8 level. Grover (2017), however, pointed out that the epis-
temological pluralism approach needs to be combined with the teaching of some
agreed-​upon concepts and programming practices. When Resnick (2017) pointed
out the need to keep pushing for epistemological pluralism, he noted that some
systems only reward students for standard ways of doing coding (i.e., the smallest
number of blocks when solving a puzzle), and some automated assessment
programs still grade students solely based on the number and types of program-
ming blocks they use. The interviewees also expressed the belief that traditional
professional or college-​level practices should not be automatically used in K–​8
environments, since nontraditional approaches to programming (such as brico-
lage) may make sense only for younger students, even if advanced programmers
might sometimes make use of these techniques as well (Berland, Martin, & Benton,
2013; Blikstein, 2011; Blikstein et al., 2014; Brennan, 2013; Graham, 2004).

3.4.5  Curriculum and Instructional Materials

The production of a quality curriculum and curricular materials is, for many
interviewees, a key component for successful CEd implementations at scale.
The interviewees noted that this is an area of significant and ongoing challenge
despite efforts such as the K–​12 CS Framework (K–​12 Computer Science
Framework Steering Committee, 2016):

No one yet has written out a full, coherent K–​12 curriculum built around a
foundational framework. The K–​12 CS Framework and the CSTA standards
have laid out concepts, practices, and performance expectations but how do
these things get manifested in curriculum and activities and experiences in
K–​12? That is a huge problem in computing right now that directly affects
implementation.
(Yongpradit, 2017)

Creating comprehensive curriculum materials is especially challenging because
there is a natural tension between uniformity and the potential for custom-
ization to the learners’ interests. Many interviewees noted the need to design

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 71

71

culturally and personally relevant curricula that would cater to diverse
populations (Buechley, 2017; Margolis, 2017; Resnick, 2017; Shapiro, 2017):

The most important challenge is relating computing to [students’] culture and
their identity. If you can get someone excited about something and engaged,
they are incredibly motivated to learn.
(Buechley, 2017)

Another important principle for curriculum design in CEd is the peda-
gogical approach in terms of how students will come into contact with the
programming language. Pears et al.’s (2007) review of the literature found
three major approaches: (a) focus on generic problem-​solving; (b) focus on
learning a particular programming language; and (c) focus on code produc-
tion, or project-​oriented CEd courses. As we discussed previously, the focus
on higher-​order problem-​solving skills is problematic. Palumbo’s (1990)
review examined transfer between learning to program and problem-​solving
and concluded that more advanced forms of transfer (far or generalized
transfer) should not be expected in introductory courses, since typically
there is no time to develop such skills. In other words, if curricula aim for the
transfer of problem-​solving skills to other domains, explicit time and effort
should be put into it. Scholarship has shown that positive results in problem-​
solving require a high involvement from teachers and well-​developed theor-
etical foundations (Clements, 1990; De Corte & Verschaffel, 1989), as well
as a considerable time investment. In one study, 150 hours of experience
were needed to generate positive learning gains in problem-​solving (Liu,
1997). Guzdial noted that this issue of programming and transfer is far from
resolved, especially when the affinities and the unity of content and compu-
tation are not clear:

Most people don’t teach programming for transfer, and if they did, they
would not be able to cover as much of programming. I think it is a zero-​sum
game: teach for programming fluency or teach for transferable problem-​
solving skills. You cannot get both in the same time.
(Guzdial, 2017)

The second approach –​ focus on learning a particular programming language –​
is by far the most common. Textbooks, lesson plans, and assessments are
designed based on the constructs of a programming language. This focus,
common in introductory college courses and Advanced Placement (AP) classes
in the USA, has been criticized by several interviewees as being too limited and
too vocational. Buechley, for example, praised new initiatives (such as the new
Advanced Placement Computer Science Principles course) that are moving AP
classes away from the “one-​language” model:

So [Computer Science Principles] is a class that provides a different model
of engaging with computing than the traditional computer science AP class
did. And a model that is much more focused on foundational concepts and
big ideas as opposed to the nuts and bolts of programming in a particular

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

72

72

Blikstein and Moghadam

language. And because of that, it has the potential to provide more accessible
pathways to more diverse kids, which is really important.
(Buechley, 2017)

The third approach is code production or project-​oriented learning. Instead
of small assignments and tasks based on language constructs, or more general
problem-​solving training, students learn to create more complex systems to
accomplish a task through projects. Even though this approach is harder to
structure and assess, it seems to be more aligned with the approaches advocated
by most interviewees. Resnick, for example, advocated for a project-​oriented
approach rather than small puzzles or language-​based activities:

There are a lot of schools where they do something with coding but it is done
very superficially, just learning a few tricks of how to put some blocks together
… but not really connecting in a deep way. [CEd should not be] just puzzles for
kids learning to solve a problem, but a platform for expressing yourself.
(Resnick, 2017)

Another common type implementation of code production or project-​oriented
approaches has been to make use of Computer Science-​inspired mathematics
and science practices. Science and mathematics as professional practices have
been deeply transformed by computation, both in terms of the core disciplines
themselves and the creation of entirely new fields such as bioinformatics, com-
putational statistics, chemometrics, and neuroinformatics. Efforts to improve
and modernize the teaching of science and mathematics should include com-
putation as a core curricular component. Skills that can be developed through
CS-​infused science and mathematics include the ability to deal with open-​ended
problems, the creation of abstractions, recognizing and addressing ambiguity
in algorithms, manipulating and analyzing data, and creating models and
simulations (Weintrop et al., 2016).

Most of the interviewees identified infusing mathematics and science cur-
ricula with computation as a productive way to bring Computing to classrooms.
diSessa (2018) highlighted that “there are people deeply enmeshed in non-​CS
disciplines, yet sufficiently expert with CS ideas and practices, to really get this
agenda accomplished now.” And Grover stated:

It is very synergistic … computation makes the science and the math more
real, authentic, and engaging. Students see aspects of the discipline that they
would not see in the static form of learning from a textbook. Conversely, com-
putation becomes alive because of the context in which it is used.
(Grover, 2017)

Some interviewees expressed skepticism as to whether there are a sufficient
number of available CEd teachers and whether it is possible to carve out
space in the busy K–​8 curriculum for a brand-​new discipline. As a result, the
interviewees noted that retraining science and mathematics teachers to add
Computing to their teaching and generating new accompanying CS-​infused
lesson plans might be a more sustainable approach. Yongpradit (2017) also
suggested that enabling teachers to receive dual certification in mathematics

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 73

73

(or science) and Computing might be a positive alternative approach for
addressing the current teacher shortage.

3.4.6  Teacher Development

One last (and crucial) systemic obstacle for large CEd implementations is the
preparation of teachers. Ultimately, it is the interactions between teachers
and students in classrooms that will determine whether students learn suc-
cessfully. Thus, it is not surprising that the interviewees expressed the belief
that teachers are the linchpin in any effort to implement or change CEd. The
preparation, effective development, and retention of CEd teachers will need
to be prioritized.

Teacher development was a central concern for most interviewees. Clancy
(2017), Margolis (2017), and Yongpradit (2017) highlighted the challenges in
building the CEd teacher workforce, and noted the need for teacher certifica-
tion, training programs based on these certifications, and incentives for teachers
to seek these qualifications. Guzdial (2017) highlighted the importance of pre-​
service teacher development as the most viable way to achieve sustainability.

The need for equity in teacher development was also highlighted, since
more affluent schools are more capable of offering high-​quality programs.
Interviewees noted that it is not enough to expose teachers to Computing con-
tent. Teachers need time to practice inclusive CEd, and these pedagogies should
be interwoven into the entire teacher preparation program. Margolis (2017) also
raised the need to educate teachers regarding bias, so that they can reflect on
belief systems and perceptions about which students can excel in computing and
how these beliefs would impact their relationships with students.

In general, there was concern about the rapid scaling of several initiatives and
the capacity to prepare thousands of teachers adequately in a very short time.
The interviewees argued that scaling too quickly disproportionately impacts
underserved communities and populations that are historically excluded
from STEM.

Margolis was particularly concerned with making equity a core tenet in
teacher development, mentioning that, in her research, she encountered signifi-
cant variability among teachers in their capacity for guiding deeper cognitive
thinking. She found that teaching was particularly productive when teachers
identified the specific Computing concepts for the students while they were
learning them and discussed how they could relate the concepts to other areas
of knowledge. The capacity to competently guide students in this way was
found to be a predictor of student learning, but it varied considerably among
teachers. Not surprisingly, teachers in less affluent areas were found to be the
least prepared to enact these strategies in the classroom, in part because their
districts had less funding for teacher PD. Margolis adds:

Not only do teachers need to be introduced to the CS content, but they need
to have time practicing pedagogies that are aimed at creating an inclusive

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

74

74

Blikstein and Moghadam

CS learning environment, building on the assets, interests, and motivations
of traditionally underrepresented students. Also, CS teacher PD must have
equity and inclusion woven throughout everything that happens in PD, not
just isolating this issue to a discrete one-​hour discussion. For instance, as
teachers are experiencing teaching lessons during PD, the other teachers who
are in the roles as students or observers should be reflecting on their own
experiences of inclusion (or not), thinking about their own students in their
classrooms, and what works (or does not) to ignite the interest of all students.
Also, teachers need time, and a safe learning environment, to reflect on all
the biased belief systems associated with which students can and cannot excel
in computing, to reflect on their own belief systems, and how belief systems
impact their relationships with the students in their classrooms. Traditionally
CS education has not been a place where these types of discussions or
reflections have taken place, but they must if we are to broaden participation
in computing.
(Margolis, 2017)

Teacher development is further discussed in Chapter 25.

3.5  Conclusion

The year 2017 marked the 50th anniversary of the Logo programming
language. In just five decades, an entirely new domain of knowledge has evolved
from an idea in the minds of a few visionaries to national public policy. And
while CEd is a relatively new discipline with a less substantial research base,
there is much reason for optimism. Ensuring that we continue this progress,
however, requires the commitment, work, and flexibility of a large number
of stakeholders. We are now facing the growing pains intrinsic to progressing
from pilot projects to large-​scale implementations, and we must look and work
beyond these growing pains to ensure that CEd fulfills its educational promise
in sustainable and equitable ways.

Despite these challenges, CEd offers many advantages and the potential
to transform learning environments and school work. Computing includes
algorithms, design, data, making, creativity, and personal expression. CEd also
facilitates productive collaboration in the classroom, connects to personally
meaningful aspects of the lives of students, allows for new types of knowledge
and assessments to be valued in schools, boosts the potential of project-​based
learning approaches, and opens possibilities of innovative ways to organize
learning environments (e.g., Berland et al., 2013; Blikstein et al., 2014; Brennan,
2013; Buechley & Eisenberg, 2008; diSessa, 2000; Sherin, 2001; Turkle &
Papert, 1990). Addressing and harnessing these advantages is important as
our world becomes more technological and digital, and equitable participation
requires computational fluency. This makes CEd necessary in K-​8 not just as
an elective subject, but as a mandatory topic. There is no question anymore
about the importance of CEd and its place and need in public education, but
there are differing opinions on why and how it should be done. Among the

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 75

75

most prominent rationales for increasing access to CEd is that it can serve as a
foundational literacy upon which other knowledge/​activities can be built, and
as a powerful context for profound, authentic, and interdisciplinary learning in
other subjects. CEd can serve as an expressive, creative medium to allow young
learners to express ideas in ways that are socially and culturally relevant, and it
can also be a valuable tool for civic and political participation.

Given the importance of CEd, many of the interviewees believe that national
rollouts of robust programs will require massive investment in the creation of
state-​level standards and curricula, teacher preparation and certification, soft-
ware/​hardware infrastructure, and research. It is not clear if all stakeholders
are aware of the depth of the effort, but many feel that partial rollouts have the
potential to increase social disparities and educational inequalities, privileging
more affluent or well-​resourced schools and districts. Additionally, although
large-​scale “CS exposure” programs are reaching millions of children, there is
concern that they do not guarantee sustained engagement, particularly for under-
served youth. Addressing these concerns requires better metrics, arms-​length
evaluation of programs, and more consensus on what constitutes success. In
addition, exposure programs could benefit from follow-​up activities, curricula,
and sufficient resources to support deeper learning and stronger outcomes. And
despite the growing demand for large-​scale rollouts and the temptation of the
adoption of one single implementation model, researchers advocate for a reper-
toire of well-​studied and well-​rationalized models that are sufficiently flexible to
be adapted to multiple local contexts.

With an eye toward stronger outcomes, a reliance on high-​quality curricula
and assessments alone is not a guarantee of effective implementation. Education
is always instantiated by teachers, so attention to pedagogy, teacher support,
and the complex dynamics of adopting new curricula is crucial. Specifically, we
found that teacher development is a key factor in the success of CEd, both pre-​
service and in-​service. In addition, the understanding of equity, inclusiveness,
and unconscious biases about CS success are viewed as necessary to teacher
development programs.

In sum, the time is ripe for thoughtfully targeted and comprehensive action to
advance the CEd community. A large and diverse body of perspectives indicates
that we must address the social, economic, and cultural barriers surrounding
computing. If access and inclusiveness are addressed effectively, we can meet
current and future workforce and citizenship demands. And we can do so in
ways that equitably drive technological and social progress and give youth new
avenues for personal expression and empowerment. Above all, we should avoid
the trivialization and the oversimplification of computing knowledge, making it
another missed opportunity to bring an exciting new set of practices, content,
and cognitive tools to students.

This effort requires the cooperation and coordination of interdisciplinary,
inter-​sector teams that thoughtfully design, implement, evaluate, and learn
from CEd initiatives. Only in this way can we achieve the hoped-​for scale and
sustainability and realize the ultimate vision of generations of researchers,

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

76

76

Blikstein and Moghadam

practitioners, and policy-​makers that have been trying, for the last 50 years, to
bring computing to all students.

3.6  Acknowledgments

The authors wish to thank the 14 interviewees for their willingness to
share a few centuries of accumulated knowledge about CEd, as well as their
invaluable insight and vision for the future: Matthew Berland (University
of Wisconsin –​ Madison), Leah Buechley (Rural Digital), Michael Clancy
(University of California, Berkeley), Andrea “Andy” diSessa (University of
California, Berkeley), Sally Fincher (University of Kent), Shuchi Grover (for-
merly SRI International), Mark Guzdial (Georgia Institute of Technology),
Mike Horn (Northwestern University), Jane Margolis (University of California,
Los Angeles), Mitchel Resnick (Massachusetts Institute of Technology), Sue
Sentance (King’s College London), Ben Shapiro (University of Colorado,
Boulder), David Weintrop (University of Maryland), and Pat Yongpradit
(Code.org).

References

Berland, M. (2017). Phone interview with Paulo Blikstein.
Berland, M., Martin, T., & Benton, T. (2013). Using learning analytics to understand the

learning pathways of novice programmers. Journal of the Learning Sciences,
22(4), 564–​599.

Blikstein, P. (2011). Using learning analytics to assess students’ behavior in open-​
ended programming tasks. In Proceedings of the 1st International Conference
on Learning Analytics and Knowledge –​ LAK 2011 (pp. 110–​116). New York:
ACM.

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014).
Programming pluralism: Using learning analytics to detect patterns in novices’
learning of computer programming. Journal of the Learning Sciences, 23(4),
561–​599.

Blikstein, P. (2013). Digital Fabrication and ’Making’ in Education: The Democratization
of Invention. In J. Walter-Herrmann & C. Büching (Eds.). FabLabs: Of
Machines, Makers and Inventors (pp. 203–221). Bielefeld: Transcript Publishers.

Blikstein, P. (2018). Pre-College Computer Science Education: A Survey of the Field.
Mountain View, CA: Google LLC. Retrieved on 1 November 2018 from https://
goo.gl/gmS1Vm

Brennan, K. (2013). Learning computing through creating and connecting. Computer,
46(9), 52–​59.

Buechley, L. (2017). Phone interview with Paulo Blikstein.
Buechley, L., & Eisenberg, M. (2008). The LilyPad Arduino: Toward wearable engin-

eering for everyone. IEEE Pervasive Computing, 7(2), 12–​15.
Clancy, M. (2017). Phone interview with Paulo Blikstein.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

Computing Education 77

77

Clements, D. H. (1990). Metacomponential development in a LOGO programming
environment. Journal of Educational Psychology, 82(1), 141.

De Corte, E., & Verschaffel, L. (1989). Logo: A vehicle for thinking. In B. Greer &
G. Mulhern (Eds.), New Directions in Mathematics Education (pp. 63–​81).
London/​New York: Routledge.

diSessa, A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge,
MA: MIT Press.

diSessa, A. (2018). Computational literacy and “the big picture” concerning
computers in mathematics education. Mathematical Thinking and Learning,
20(1), 3–31.

Fincher, S. (2017). Phone interview with Paulo Blikstein.
Google LLC. & Gallup Inc. (2016). Diversity gaps in computer science: Exploring the

underrepresentation of girls, Blacks and Hispanics. Retrieved from http://​goo
.gl/​PG34aH

Graham, P. (2004). Hackers & Painters: Big Ideas from the Computer Age. Sebastopol‎,
CA: O’Reilly Media.

Grover, S. (2017). Phone interview with Paulo Blikstein.
Grover, S., & Pea, R. (2013). Computational thinking in K–​12: A review of the state of

the field. Educational Researcher, 42(1), 38–​43.
Guzdial, M. (2017). Phone interview with Paulo Blikstein.
Horn, M. (2017). Phone interview with Paulo Blikstein.
K–​12 Computer Science Framework Steering Committee (2016). K–​12 Computer Science

Framework (978-​1-​4503-​5278-​9). Retrieved from http://​k12cs.org/​wp-​content/​
uploads/​2016/​09/​K%E2%80%9312-​Computer-​Science-​Framework.pdf

Liu, M. (1997). The effects of HyperCard programming on teacher education students’
problem-​solving ability and computer anxiety. Journal of Research on
Computing in Education, 29(3), 248–​262.

Maltese, A., & Tai, R. (2011). Pipeline persistence: Examining the association of educa-
tional experiences with earned degrees in STEM among US students. Science
Education, 95(5), 877–​907.

Margolis, J. (2017). Phone interview with Paulo Blikstein.
National Research Council (2006). America’s Lab Report: Investigations in High School

Science. Washington, DC: National Academies Press.
National Research Council (2012). A Framework for K–​12 Science Education: Practices,

Crosscutting Concepts, and Core Ideas. Washington, DC: National Academies
Press.

Noonan, R. (2017). STEM Jobs: 2017 Update (ESA Issue Brief # 02-​17). Retrieved
from www.esa.gov/​reports/​stem-​jobs-​2017-​update

O’Neil, C. (2016). Weapons of Math Destruction. New York: Crown Publishing
Group.

Palumbo, D. (1990). Programming language/​problem-​solving research: A review of rele-
vant issues. Review of Educational Research, 60(1), 65–​89.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York:
Basic Books.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., & Paterson,
J. (2007). A survey of literature on the teaching of introductory programming.
ACM SIGCSE Bulletin, 39(4), 204–​223.

Resnick, M. (2017). Phone interview with Paulo Blikstein.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

78

78

Blikstein and Moghadam

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-​Cunniff, D., …, Verno,
A. (2011). CSTA K–​12 Computer Science Standards: Revised 2017. Retrieved
from www.csteachers.org/​page/​standards

Sentance, S. (2017). Phone interview with Paulo Blikstein.
Shapiro, B. (2017). Phone interview with Paulo Blikstein.
Sherin, B. L. (2001). A comparison of programming languages and algebraic notation

as expressive languages for physics. International Journal of Computers for
Mathematical Learning, 6(1), 1–​61.

Stager, G. (2017). A Modest Proposal. Retrieved from http://​stager.tv/​blog/​?p=4153
Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the com-

puter culture. Signs: Journal of Women in Culture and Society, 16(1), 128–​157.
US Department of Labor (2007). The STEM workforce challenge: The role of the public

workforce system in a national solution for a competitive science, technology,
engineering, and mathematics (STEM) workforce. Retrieved from https://​
digitalcommons.ilr.cornell.edu/​key_​workplace/​637/​

Vogel, S., Santo, R., & Ching, D. (2017). Visions of computer science education:
Unpacking arguments for and projected impacts of CS4All initiatives. In
Proceedings of the 48th ACM Technical Symposium on Computer Science
Education –​ SIGCSE 2017 (pp. 609–​614). New York: ACM.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky,
U. (2016). Defining computational thinking for mathematics and science
classrooms. Journal of Science Education and Technology, 25(1), 127–​147.

Wilensky, U. (1999, updated 2006, 2017). NetLogo [Computer software] (Version 6).
Evanston, IL: Center for Connected Learning and Computer-​Based Modeling.
Retrieved from http://​ccl.northwestern.edu/​netlogo

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulating knowledge discip-
lines through new representational forms. In Proceedings of Constructionism
2010 Paris (p. 15). Paris, France: American University of Paris.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33–​35.

Yongpradit, P. (2017). Phone interview with Paulo Blikstein.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.004
Downloaded from https://www.cambridge.org/core. Columbia University - Law Library, on 12 Oct 2019 at 06:06:38, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.004
https://www.cambridge.org/core

