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3	 Computing Education
Literature Review and Voices from the Field

Paulo Blikstein and Sepi Hejazi Moghadam

Dedicated to Francisco Walter Durán Segarra (in memoriam), Ecuadorian 
polymath, professor, and educational researcher, an ahead-​of-​his-​time mind who 
never gave up the fight for a more emancipatory, meaningful, and democratic 
education.

3.1  Introduction

In 1967, Seymour Papert, Cynthia Solomon, and Wally Feurzeig 
created the Logo computer language, the first designed for children (Papert, 
1980)  –​ an event widely considered as the beginning of computing educa-
tion (CEd).1 In a time when computers cost millions of dollars and occupied 
entire rooms, teaching computing to children, while visionary, was a hard sell 
for school systems and policy-​makers. From the mid-​1970s to the early 1990s, 
CEd slowly penetrated schools worldwide. Despite a decade of popularity in 
the 1980s, it never reached as deeply into the educational mainstream as Papert 
and his colleagues wished. Since the mid-​2000s, however, there has been a 
pronounced shift in the focus on science, technology, engineering, and mathem-
atics (STEM) education, and CEd is at the forefront of this process (National 
Research Council, 2012). As computational technologies have become inexpen-
sive and pervasive in our lives, the demand for an educated and technologically 
literate labor force has continued to increase (Noonan, 2017; US Department of 
Labor, 2007). This is not merely about the labor force, but also about citizenship. 
The need for children to become future producers of technology –​ fluent in the 
medium of our time, instead of merely consumers –​ has become a major focus 
for policy-​makers and researchers. Today, educators and CEd advocates are 
pushing ahead with plans to add computing to the list of topics that all students 
should study (K–​12 Computer Science Framework Steering Committee, 2016).

Other catalysts driving the mainstream acceptance of CEd include the launch 
of the Scratch, Blockly, NetLogo, and Alice programming environments; the 
launch of organizations such as the Computer Science Teachers Association 
(CSTA; an international body founded by the Association for Computing 
Machinery [ACM]), the rise of the maker movement and fablabs (Blikstein, 
2013, 2018); the creation of organizations providing CS learning opportunities 

	1	 John Kemeny and Thomas Kurtz (Dartmouth College) created the BASIC programming 
language in 1964, but Logo is used as a landmark because of its comprehensive focus on all 
segments and age levels of education, especially children.
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such as Code.org, Black Girls Code, Girls Who Code, and others2; and the 
rollout of national programs such as CS4All in the USA. As a result, there is an 
almost overwhelming demand from school systems worldwide for research and 
implementation guidelines, one that the relatively small CEd research commu-
nity is simply not able to meet (Guzdial, 2017). The newness of the discipline 
is also an important factor. For example, while the US National Council of 
Teachers of Mathematics (NCTM) was founded in 1920, and its science coun-
terpart, the National Science Teachers Association (NSTA), was formed in 1944, 
CSTA was not launched until 2004. When NCTM and NSTA were formed, 
school infrastructure was already in place for these disciplines, thousands of 
mathematics and science teachers were teaching in schools across the USA, and 
teacher colleges supported a strong pipeline for more. CEd does not have those 
advantages today. The current focus on CEd has also generated much discourse 
regarding its purpose. Is the rationale for CEd to fulfill job market needs, pro-
mote personal empowerment, teach children to code, develop students’ fluency 
in a new literacy, address historical educational inequalities, or some combin-
ation of all of the above?

The goal of this chapter (which is based on a longer report originally commis
sioned by Google3,4) is to better understand the state of CEd by using a methodo-
logical innovation. Instead of only examining the published literature, we also 
interviewed some of the main voices in the field, inquiring about two topics in 
particular: the multiple rationales for teaching computing and the obstacles for 
sustainable implementation. With these goals in mind, this chapter summarizes 
interviews conducted with several leading researchers and practitioners, in add-
ition to providing an examination of literature reviews and articles.

3.2  Methods

We utilized three main data sources for this chapter:  interviews, lit-
erature reviews, and analysis of papers recommended by the interviewees. 
For the interviews, we selected leaders in the field from various universities, 
institutions, and organizations, trying to balance intellectual traditions, aca-
demic backgrounds, and expertise. The selection focused mostly on the USA, not 
because it is representative of what happens in other countries, but mostly to have 
a more complete picture of CEd in one country. The final group of interviewees 
consisted of 14 people: Matthew Berland (University of Wisconsin-​Madison), 
Leah Buechley (Rural Digital), Michael Clancy (University of California, 

	2	 There is a large number of such organizations, many focusing on underserved populations: Black 
Girls Code, Girls Who Code, Girls Code it, CoderDojo, Technovation, and Yes We Code.

	3	 Available at https://​services.google.com/​fh/​files/​misc/​pre-​college-​computer-​science-​education-​
report.pdf

	4	 Stanford University has strict rules to avoid conflicts of interest or bias in reports written for 
private entities. The original report was created following those rules.
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Berkeley), Andrea “Andy” diSessa (University of California, Berkeley), Sally 
Fincher (University of Kent), Shuchi Grover (formerly SRI International), 
Mark Guzdial (Georgia Institute of Technology), Mike Horn (Northwestern 
University), Jane Margolis (University of California, Los Angeles), Mitchel 
Resnick (Massachusetts Institute of Technology), Sue Sentance (King’s College, 
London), Ben Shapiro (University of Colorado, Boulder), David Weintrop 
(University of Maryland), and Pat Yongpradit (Code.org).

All invited interviewees accepted to be interviewed, except one professor, 
who nominated another scholar in his own department (Michael Clancy, 
University of  California, Berkeley), and Andrea diSessa, who preferred to 
send an in-​preparation paper instead (the paper is used in this chapter in lieu 
of  an interview and is listed in the references). All participants were given the 
option of  anonymity and none opted for it. After the first complete draft was 
finished, all 14 interviewees were given the opportunity to fully review the 
text and suggest further changes, which were individually considered for the 
final version.

We used a semi-​structured protocol for the interviews that included questions 
about the relevance and importance of teaching computing, the main research 
findings in the field, and research, policy, and implementation agendas for 
years to come. The interviews were conducted remotely by the first author via 
videoconference, audio recorded, transcribed in their entirety, and analyzed 
using a grounded coding approach. The principal themes extracted from the 
initial coding were:  (a) teacher preparation; (b)  policy and scale-​up; (c)  cur-
riculum development; (d)  cultural, diversity, and equity issues; (e)  pedagogy; 
and (f) historical aspects of CEd. These categories informed a further refining 
of the coding, so the data were recoded for more fine-​grained topics, resulting 
in approximately 1,000 excerpts grouped into 130 sub-​codes. Those were then 
recategorized in terms of the six initial themes and informed the structure of 
the analysis. For the purposes of this chapter, we  will focus mostly on two 
of those six main clusters of: the rationales for teaching computing and CEd 
implementation.

The literature was selected using a combination of recommendations from 
the interviewees, well-​established policy documents such as the CSTA K–​12 
Computer Science Standards (Seehorn et  al., 2011) and the K–​12 Computer 
Science Framework (K–​12 Computer Science Framework Steering Committee, 
2016), foundational works in the field, and existing literature reviews. We used 
the literature to add a layer of peer-​reviewed research to the topics extracted 
from the interviews, and triangulated research findings across interviews and 
the literature.

We chose this hybrid format (interviews and reviews) to simultaneously 
capture well-​established facts and findings, but also novel information that 
has not yet made it to the publication venues in the field. Also, some of 
the important challenges and issues in CEd often do not show up in peer-​
reviewed publications because many active members of  the community are 
also tool developers instead of  researchers  –​ so their work could not be 
entirely captured in a traditional literature review. This combined use of 
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interviews and literature offered a more comprehensive view of  the state of 
the very young and dynamic field of  CEd.

We will reference the interviews using the conventional reference format 
for personal communication (it might help readers to keep in mind that most 
references from 2017 are, in fact, the interviews).

3.3  Findings: Rationales for Justifying CS Education

The first theme emerging from the interviews and literature, and one of 
the main topics of this chapter, was the differing reasons for teaching CS and their 
considerable consequences for CS implementation programs. Similar to a recent 
study by Vogel, Santo, and Ching (2017), we found that the interdisciplinary 
nature of CS brings together very different stakeholders and views. CEd includes 
professionals from different academic cultures and professional allegiances: uni-
versity professors, K–​12 educators, CEOs of technology companies, entrepreneurs, 
government officials, and diversity and equity advocates. Not surprisingly, the 
data from the interviews and literature revealed many different justifications for 
why CS should be taught in public education systems (e.g., diSessa, 2000; Wing, 
2006). These rationales can be expressed as four distinct positions:

•	 The labor market rationale: Labor market changes and the need to sustain a 
competitive economy are the main driving forces for this rationale. Some con-
sider that CS knowledge will be useful not only for professional programmers 
but also in a variety of twenty-​first-​century non-​technical jobs, thus univer-
sally valuable for all professions.

•	 The computational thinking rationale: The argument for “computational 
thinking” is that computer scientists’ ways of thinking, heuristics, and 
problem-​solving strategies are universally important, and would transfer to a 
variety of knowledge domains and everyday problems. It would also support 
the development of students’ higher-order thinking skills.

•	 The computational literacy rationale: Computational literacy is not a new skill 
or a class of problem-​solving strategies, but a set of material, cognitive, and 
social elements that generate new ways of thinking and learning. It enables 
new types of mental operations and knowledge representations, creates new 
kinds of “literatures,” makes it possible for people to express themselves in 
new ways, changing how people accomplish cognitive tasks.

•	 The equity of participation rationale: CS knowledge will be required for the 
best and most creative jobs, for civic participation, and for understanding the 
impact of computation on society. Additionally, since our cognitive capabil-
ities will be limited by our ability to utilize computation, equity of participa-
tion in CEd becomes the central concern, and is one of the most significant 
gaps in research and implementation.

Making these four rationales explicit is important because they drive the way we 
write curricula, train teachers, and implement CEd in schools. Interviewees pointed 
out that the public’s lack of awareness about these different viewpoints –​ and 
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the ways they are similar, dissimilar, complementary, and compatible –​ must be 
addressed (e.g., Buechley, 2017; Resnick, 2017).

3.3.1  The Labor Market Rationale

Changes in the global labor market have been a major driver of the efforts to 
teach CS in schools. This rationale is primarily related to the demands for more 
workers with new skill sets and is frequently championed by industry leaders 
and policy-​makers. The labor market argument comes in two chief forms. The 
first cites the hundreds of thousands of open jobs in CS (Google LLC & Gallup 
Inc., 2016; Grover & Pea, 2013) and notes that this number will increase in 
years to come, with data science and artificial intelligence becoming mainstream 
fields relevant across many industries. Similarly, it is argued that the economic 
productivity or contributions of a country will be determined by its capacity to 
generate more scientists and engineers. CEd can presumably contribute to this 
vision by fixing the “leaky” STEM pipeline and driving more students to pursue 
CS careers. However, Grover and Horn point out that in grades K–​8 especially, 
this concern with jobs might be misplaced:

In elementary school, students and teachers are definitely not thinking about 
jobs. It is about what are the foundational knowledge and skills that children 
should have? At the middle school level, even though it is not a jobs argu-
ment, I think there is an identity argument there. This is especially relevant to 
computing because there are so many stereotypes associated with it.
(Grover, 2017)

We have gone a little too far on the commercial end of the spectrum, we have 
become preoccupied with training the next generation of engineers, these eco-
nomic motivations are outweighing the computational literacy ideas.
(Horn, 2017)

The second form the labor market argument takes is a subtler one. It argues 
for more CS knowledge embedded in all careers, instead of simply training more 
programmers. Several of the interviewees mentioned that while professional 
programmers will be necessary, the need could be restricted to a relatively small 
number of positions that are highly specialized (Guzdial, 2017; Resnick, 2017; 
Shapiro, 2017). Some reports suggest that only about 6 percent of the work-
force will need to do coding with the scope and specialization of professional 
programmers (Noonan, 2017). The greatest demand would not be for profes-
sional programmers, but for other professionals who will have to use CS and 
programming for automating spreadsheets, programming queries, accessing 
online databases, using data-​mining software tools, and operating physical com-
puting devices in interactive art or home automation.

3.3.2  The Computational Thinking Rationale

The second argument for teaching CS derives from the concept of  
“computational thinking” (CT), as put forth in a position paper written 
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by Jeanette Wing (2006). Wing proposed that computer scientists’ ways of 
thinking, heuristics, and problem-​solving strategies are universally important 
both for applying computing ideas to do work in other disciplines and for 
applying computing ideas in everyday life. Examples are the ability to use 
abstractions and pattern recognition to represent problems in new ways, to 
break down problems into smaller parts, and to employ algorithmic thinking. 
With 3,500 citations (according to Google Scholar as of  April 2018), the pos-
ition put forward by Wing has played a critical role in shaping the world of 
CEd. Her paper and her influential position as a National Science Foundation 
(NSF) officer helped reinvigorate the field. Some researchers, however, are 
skeptical about how well students transfer CS knowledge to everyday life and 
general problem-​solving. diSessa (2018) mentions that there have been several 
attempts over the last 100 years to teach children transferable problem-​solving 
or higher-​order thinking skills (HOTS) using mathematics, Latin, or Greek, 
but these endeavors often failed. Guzdial (2017) mentions several studies on 
the transfer of  CEd knowledge and points out that generally “students fail 
to apply even simple computing ideas to fairly simple problems.” Yongpradit 
further notes that:

CEd is not immune to the misconceptions about high-​level transfer. I know 
that there are advocates … saying that computing can improve general critical 
thinking skills. That’s not supported by research. It will not magically improve 
your math scores.
(Yongpradit, 2017)

Because Wing’s original ideas are still influential in the field, the need for 
more empirical evidence and the absence of  a more definitive unpacking of 
the term CT are considered to be major issues in CEd –​ after all, would the 
“ways of  thinking” of  computer scientists transfer to other domains and 
contexts?

However, the definition of CT has been evolving over the last few years, and 
steering away from the original one put forth by Wing, as Grover notes:

The definition of CT has been evolving since Wing, and in its evolution it has 
broadened to encompass aspects of CT concepts, practices, as well as learners’ 
dispositions and perspectives, perhaps fueled by a genuine desire to broaden 
participation, thus including aspects such as creativity, collaboration, and 
communication in practices of CT.
(Grover, 2017)

CT is further discussed in Chapters 17–​20 of this Handbook.

3.3.3  The Computational Literacy Rationale

With more than 1,100 citations (according to Google Scholar as of April 2018), 
Andrea diSessa’s book Changing Minds is the most established account of the 
idea of “computational literacy” (diSessa, 2000). In the book, and in recent 
publications (diSessa, 2018), he explains how different computational literacy is 
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from the original definition of CT (a similar discussion appears in Wilensky & 
Papert, 2010).

Learning to use a new medium takes effort. The printing press was a huge 
leap in human history, but that leap did not happen until many more people 
became literate. A printing press is not of much use unless authors know how 
to write and your audience knows how to read. Achieving computational 
literacy in society means that people can read and write with computation, 
which includes an ability to read and write computer programs.
(diSessa, 2000)

I view computation as, potentially, providing a new, deep, and profoundly 
influential literacy –​ computational literacy –​ that will impact all STEM dis-
ciplines at their very core, but most especially in terms of learning.
(diSessa, 2018)

diSessa claims that computational literacy is not simply a new job skill or gen-
eric CS-​inspired problem-​solving strategy, but a set of material, cognitive, and 
social elements that generate a new way of knowing, thinking, learning, and 
representing knowledge. A new literacy makes new types of mental operations 
and knowledge representations possible, creates new kinds of previously non-
existent “literatures,” and changes how people interact with each other and use 
digital devices when they are accomplishing cognitive tasks. He also mentions 
that there is a semantic confusion between computational literacy versus terms 
like digital literacy, computer literacy, or information communication and tech-
nology (ICT) literacy. These latter terms refer to the competent use of different 
computational devices and technologies. Computational literacy, conversely, is 
concerned with how computational media can change the way we know, learn, 
and think (in contrast with the focus on problem-​solving or HOTS).

diSessa also argues that concepts in science and mathematics can be made sim-
pler using computational representations. For example, velocity and acceleration 
are simple to understand algorithmically, but unnecessarily complex to learn using 
traditional algebraic representations. Chemical processes such as diffusion, given 
their probabilistic nature, are convoluted when represented in algebraic terms, but 
very simple to learn using computational tools such as agent-​based models (e.g., 
NetLogo; Wilensky, 1999), in which students can program the behavior of indi-
vidual atoms. The argument for computational literacy extends beyond the need 
for teaching programming languages. It makes the claim that several disciplines 
could be fundamentally transformed if taught using computational tools, in the 
same way that text literacy changed the teaching of so many disciplines centuries 
ago.5 Sentance, Resnick, and Horn also stress that computational literacy is multi-
faceted, and more than just learning CT or programming concepts:

I think computational thinking skills exist … I think we just have to be careful 
about thinking that computing is only computational thinking. CS … involves 

	5	 Text literacy fundamentally changed how we accomplish cognitive operations  –​ for example, 
it acts as external memory, it is shareable, and it is permanent. diSessa and others claim that 
computational literacy could have the same revolutionary consequences.
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modeling and design and creativity, more than just the cognitive elemental 
thinking skills. That is what we need to teach in K–​8. We need to teach the 
whole subject and be cautious of being too narrow in what we are offering in 
the curriculum in school.
(Sentance, 2017)

Gaining a literacy is a matter of developing your thinking, your voice, and 
your identity … The reason for learning to write is not just for doing practical 
things but being able to express your ideas to others. Computation is a new 
way of expressing ourselves and it’s important for everyone to learn … If you 
want to feel like a full participant in the culture, you need to be a contributor 
with the media of the times.
(Resnick, 2017)

It is about supporting computation in many different genres or niches. As 
a poet, the way you use computation might be very different than a jour-
nalist, a researcher, or somebody who works in government. Just like we 
have different forms of  literacy, we might have different forms of  computa-
tional literacy.
(Horn, 2017)

However, as diSessa states, discussions about the role and importance of CEd 
are far from over, and these views should all be earnestly considered with their 
implicit contradictions:

The labor market view and the computational thinking view contain at least 
implicit criticisms of the computational literacy view. The former might think 
that immediate and practical economic effects are more important, and the 
latter suggests that computational literacy is diffuse, hard to implement, and 
might insist that high-​order thinking skills do exist, so these perspectives 
should not be ignored.
(diSessa, 2018)

Some interviewees pointed out that the boundaries between CT and com-
putational literacy are not well-​defined. While Grover (2017) states that new 
definitions of CT have been evolving to include, for example, creativity and col-
laboration, formerly mostly associated with computational literacy, Guzdial 
(2017) worries that these new CT definitions “are going too broad,” and Resnick 
notes that the definition of CT “out in the field” is still very much connected to 
the original one as stated in Wing’s (2006) paper. Computational literacy is fur-
ther discussed in Chapters 18 and 19.

3.3.4  The Equity of Participation Rationale

Several interviewees mentioned equity as their central concern in CEd, arguing 
that it has traditionally been a side issue in the field and one of the most signifi-
cant gaps in research and implementation. There are two main issues related to 
the topic:

•	 Understanding the impact of computation on society, and
•	 Ensuring equity and diversity in participation.
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The K–​12 Computer Science Framework (K–​12 Computer Science 
Framework Steering Committee, 2016) also recognized equity and broadening 
participation as core issues in CEd. Students excluded from CEd may struggle 
to fully participate in twenty-​first-​century society along multiple dimensions. 
Not only will the best and most creative jobs require CS knowledge, but our 
cognitive capabilities to solve problems will be limited by our inability to utilize 
computation fully. Even traditional forms of civic participation will require an 
understanding of Computing. As Buechley stated:

We live in a computationally mediated world, and it is important for people to 
have an understanding of how computational systems work and the role that 
they play in those systems, how those systems impact their lives, our democ-
racy, the economy, and the way we socialize and interact with people.
(Buechley, 2017)

Several interviewees gave examples of  how computing will become increas-
ingly crucial for civic participation and informed decision-​making. These 
examples include knowing what algorithms are, how computational tools can 
manipulate social media, how to participate in a social discourse mediated 
by algorithms, and how to make sense of  job displacement due to automa-
tion. It is also important to be aware of  the presence and consequences of 
technologies such as machine learning (ML) and artificial intelligence (AI) 
in a number of  everyday devices and experiences, understanding how much 
information we divulge (sometimes unknowingly) about ourselves, and being 
aware of  the ways in which bias can get built into technologies that influ-
ence critical decisions such as prison sentencing, mortgage allocation, and 
the deployment of  neighborhood policing resources (O’Neil, 2016; Shapiro, 
2017). The comprehension of  the rapidly evolving landscape of  devices and 
tools that are key for active participation in modern society is also central to 
this argument. Students who do not fully understand these issues risk being 
more easily manipulated as consumers, voters, and citizens, and more vul-
nerable to cybercrime. They also are less likely to have access to leadership 
positions and high-​status jobs and are more likely to be on the sidelines of 
future societal change.

The interviewees also noted that Computing drives innovation across many 
disciplines and industries and that the resulting changes have had both an eco-
nomic and a sociological impact. Some also said that allowing students to 
explore their social and cultural concerns using computing helps motivate and 
engage them and makes Computing relevant to their lives, especially in diverse 
populations (Margolis, 2017). Buechley (2017) adds that when you put com-
puting in contexts that can be compelling and exciting to different groups of 
people, “you get diverse populations to show up and participate,” and stresses 
the importance of making conscious, deliberate space for that to happen. Many 
interviewees noted that private and more affluent schools will most certainly be 
able to offer CEd programs with high complexity, while less affluent or public 
school systems will only offer very simplified versions:
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Private schools do not do just generic education. They have kids working 
on portfolios. They have children doing internships. They have kids doing 
projects and making it relevant to them … Standardized education which has 
no connection to kids’ lives is what is often given to poor kids.
(Margolis, 2017)

[I was] working first in informal settings and then in recent years, I have moved 
more in the formal space. I saw it as being more relevant because that is now 
seen as a way to level the playing field and make sure that all children get it, not 
just those that happen to be fortunate to get it through after-​school experiences.
(Grover, 2017)

Grover noted that the Obama administration’s naming of the national CEd 
effort as “Computer Science for All” when it was announced in January 2016 
supported this equity-oriented perspective:

This of course came as a result of notions the community grew to accept over 
the previous 5 years … CSForAll is now a well-​used term that captures this 
“equity of participation” notion.
(Grover, 2017)

Sentance (2017) stresses the importance of making CS mandatory in all schools, 
for all students, not as mere “exposure,” but as a way to avoid self-​selection. The 
interviewees also noted that the lack of a diverse CS workforce results in the 
design of products and services that cater to a very narrow range of people and 
problems, thus perpetuating inequality. Researchers concerned with the equity 
argument also posit that we could see a much more perverse version of the 
“digital divide” in the years to come if  immediate and intentional actions are 
not taken to address these inequities while we are still in early design stages of 
CEd. Equity issues are further discussed in Chapters 16 and 24.

3.4  Sustainable Implementation and Systemic Obstacles

The second cluster of findings stemming from the interviews and the 
literature relates to key components needed across the CEd system to support 
wider and more effective implementation. The “system” we define includes the 
various interrelated institutions and mechanisms that shape and support CEd 
teaching and learning in the classroom.

The six key components of CEd implementations reviewed in this section are 
equity, scaling, quality of implementation, pluralism, curriculum, and teacher 
development. It is difficult to focus on any particular component without 
considering how it is influenced by –​ and how it in turn influences –​ the other 
components. For example, what students learn is clearly related to what they 
are taught, which itself  depends on many elements: the instructional materials 
available in the market; the curriculum adopted locally; teachers’ content and 
pedagogical knowledge; how teachers elect to use the curriculum; the kinds 
of resources, time, and space that teachers have for their practice; what the 
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community values regarding student learning; and how local, state, and national 
standards and assessments influence instructional practice.

I am not attempting to provide a full discussion of all possible influences on 
CEd; rather, I focus on the themes that emerged from the data and how they 
might contribute to a more coherent and inclusive implementation of CEd.

3.4.1  Equity and Broadening Participation

Several interviewees mentioned broadening participation in and changing 
perceptions of CS as perhaps the most important challenges for our commu-
nity. Berland, Buechley, Margolis, Sentance, and others stressed the striking con-
trast between what happens in Computing classrooms in affluent schools and 
in less affluent schools. Almost all of the interviewees expressed concern with 
the unequal presence of programming in public schools, the quality of instruc-
tion, and the unconscious bias of some educators and counselors regarding who 
is “suited” to take the Computing classes. They also noted that while affluent 
schools are more likely to offer comprehensive Computing programs for their 
students, most public districts are ill-​equipped to offer anything more than very 
brief, standardized experiences, which they fear could give school administrators 
and teachers an incorrect metric for CEd adoption and distract them from 
implementing more robust programs in their schools. The interviewees also worry 
that the numbers of children reached as advertised by nonprofits and industry 
providers give the impression that the “mission has been accomplished,” whereas 
most agree that we are still very far from providing CEd to all students. At least 
three researchers also noted that funding currently provided to large national 
organizations would be better directed to research institutions or smaller, more 
local nonprofits. But Yongpradit (2017) noted that national organizations can be 
a channel for funding to smaller organizations.

Regarding broadening participation, most interviewees favored programs that 
make learning Computing more attractive by focusing on personal expression 
and creativity, especially at the K–​8 level. They also agreed on the importance 
of culturally relevant curricula that support diverse ways of approaching CEd 
and diverse ways of expressing one’s knowledge. Buechley (2017), for example, 
mentioned that computer scientists and engineers tend to discount culture and 
cultural relevance as key factors in learning and in tool design. In her work, she 
instead focuses on creating new types of clubhouses and computing cultures that 
speak to these diverse practices. Michael Clancy also advocated for CEd that 
incentivizes meaningful engagement:

Students will be more motivated to work if  the assignments allow creativity, 
and allow the student to relate to his or her experience. Part of that would 
be more flexible tools that allow a student to make better use of his or her 
experience. What I would like to see is some way to have a broader scope and 
interest of activities.
(Clancy, 2017)

Some identified the need to make CEd mandatory for all students as a means 
of ensuring equitable participation. Sentance (2017), for example, argued that 
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“if  we don’t make computing mandatory, we know from previous experience 
that self-​selecting groups of people will choose computing … so we have a 
responsibility to offer that to all children and to reach everybody.” Yongpradit 
(2017) stated that schools should at least be required to offer CEd, and that we 
should make CEd courses available permanently for students in public schools. 
Guzdial (2017) expressed concern that some states are trying to implement 
“CS4All” without an explicit focus on underserved groups. He points out that 
affluent schools will be able to move quickly to provide Computing for their 
students, while less affluent schools will struggle with financial limitations, fur-
ther exacerbating the “coding divide.” Margolis also noted that, while the “CS 
for California” campaign has an equity agenda:

The rush to scale and the pressure to put curriculum and teacher profes-
sional development (PD) online will possibly have dangerous unintended 
consequences for the issue of equity … The learning partnership of teachers 
and of researchers needs to become part of a dynamic iterative cycle for con-
tinuous improvement … For programs to sustain themselves, to change the 
culture of the schools so that teachers are supported to have active, engaged, 
inclusive classrooms, for programs to be fully embraced by the districts them-
selves. It is the slow work of relationship building and learning together that 
is required. For this to happen there also needs to be a holistic awareness of 
all the educational issues in schools that continue to threaten equity. CS in 
schools does not exist on isolated islands. All of the large issues impacting 
education, such as the move for privatization, de-​professionalizing teachers, 
and school tracking will affect our broadening participation in the computing 
mission.
(Margolis, 2017)

3.4.2  Scaling and Assessment

Buechley, Shapiro, Berland, and other interviewees expressed concern about 
traditional forms of school reform taking over the implementation of CEd. 
Specifically, they noted that fixed curricula, standardized assessments, and 
inflexible teacher training programs do not foster real scientific or mathematical 
thinking in students (National Research Council, 2006, 2012) and have a ques-
tionable track record for motivating students to pursue STEM careers (Maltese 
& Tai, 2011). For Buechley (2017), one dominant narrative around CEd is that 
“we need to figure out the concepts, and teach them in the right way in a fixed 
curriculum.” She disagreed with this narrative, however, and instead advocated 
for a perspective in which motivation, engagement, personally relevant projects, 
and culturally aware curriculum design take precedence. According to Buechley, 
CEd lends itself  especially well to projects and interdisciplinary work that 
connect programming to art, design, biology, or mathematics:

Connecting computation and computing to different practices, which some-
times coincide with really different ways of approaching and making sense 
of the world, is the most powerful way that you can engage different kinds of 
people in computing … As one example, I have been connecting computation to 
textile crafts, textile design, and fashion design, and I have found that through 
doing that, you can dramatically change the gender participation ratios. You 
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can get lots of young women to engage enthusiastically with computing in a 
way that they just do not do in more traditional computing contexts.

Computer science is a fundamentally creative discipline. You construct things 
when you write a computer program. And in that sense, it’s really distinct 
from mathematics or science. That is a distinction that is not fully appreciated 
and made sense of, but is very powerful and important.
(Buechley, 2017)

Berland expressed a similar concern:

There are very few subjects in which students feel like they can make a change in 
the world and they can express their independent selves. I think their ability to 
make their own games, make their own art, make them in ways that are shareable 
with code, is really powerful. [Instead of giving students the right answer] it is 
better to create safe spaces to fail, to play, to tinker … This is where you get the 
bang for the buck. That’s where the learning happens. Another truism of edu-
cation is that things are driven by the ways that they are assessed. If you assess 
people for knowing this or that keyword in C++,6 then that’s what you’re going 
to get and that’s not particularly valuable, but if you assess people on their ability 
to teach each other complex concepts, that’s what you’re going to get.
(Berland, 2017)

Fincher (2017) cited the UK’s Project Quantum7 as an example of an explicitly 
research-​based project that combines scholarly work, practical utility, curric-
ulum scaffolds, and teacher PD.

3.4.3  Reliance on Surface-​Level, Low-​Quality Solutions

Another topic that was mentioned by many interviewees as a systemic obstacle 
was related to the pace and depth of many of the current CEd implementations, 
pointing to the fact that many seem to be superficial and overly simplified, 
especially in public education. Margolis expressed concerns about the speed at 
which they are being developed and put into classrooms, and argued that this 
approach has unintended educational consequences, especially for members of 
underrepresented groups:

[The idea of many programs is] ship it out. Get it out there and we will see if there 
are bugs in it, right? That has some real potential dangers in education because 
you put something online and the school district says, “Okay, we’re going to do 
computing online,” and then all of a sudden the girls and a lot of the students of 
color don’t do well, and then the principal says, “See? Our kids are not up for com-
puting. They didn’t do well. They’re not interested.” In fact, they just experienced 
horrible instruction, and so they get turned off, but in their minds they’re not cut 
out for it, and in the minds of the principals they’re not cut out for it.
(Margolis, 2017)

Grover voiced a similar concern. She has been observing and researching citywide 
implementations in the USA and examining the quality and depth of the projects. 

	6	 C++ is a very popular professional programming language.
	7	 http://​community.computingatschool.org.uk/​resources/​4382/​single
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She noted the simplicity of the projects she observed and the need to more deeply 
engage groups that have been historically underrepresented in Computing:

Almost no one uses Boolean logic. They use variables but just as a count 
or a score. You barely ever see expressions with variables being used or you 
will rarely see a loop with a terminating condition that is controlled by a 
Boolean expression with variables. Also, I read this paper from Yasmin Kafai 
and Deborah Fields where they analyzed the Scratch community projects 
[in 2012].8 Most children stayed at the shallow end, they used the simplest 
constructs.
(Grover, 2017)

Shapiro (2017) voiced concerns about the concentration of resources in just 
a few CEd organizations, which could lead to “very homogeneous curricula/​
programs which would move us in the opposite direction” from many of the 
progressive approaches discussed in the CEd community. Similar concerns have 
been voiced by many prominent educators in light of large-​scale implementations 
in many US cities. As those implementations roll out, the quality of instruction 
has often been criticized as superficial, stifled, and insufficient to create fluency. 
Gary Stager observed:

I wish I had 1 cent for every educator who has told me that her students “do 
a little Scratch.” I always want to respond, “Call me when your students 
have done a lot of Scratch.” The epistemological benefit of programming 
computers comes from long intense thinking. Fluency should be the goal.
(Stager, 2017)

One of  the paths to address these issues is the creation of  partnerships 
between researchers and governments, since government officials need 
support in scaling efforts in order to go beyond oversimplified solutions. 
Guzdial (2017) is currently helping many states conduct landscape surveys9 
to determine the state of  CEd in different parts of  the country. He contends 
that policy decisions and coordination between different stakeholders would 
be much easier if  landscape surveys were standard operating practice, 
as they allow states to gauge the growth of  CEd offerings, PD programs, 
and enrollments. Yongpradit (2017) also noted that federal and state-​
level organizations urgently need technical assistance around creating 
certifications, growing the CEd teacher pipeline, and implementing curricula. 
Because CEd is such a new field, there are too few trained professionals and 
specialized organizations that can offer those services, leading to simplified 
and superficial implementations. But the issue of  superficiality is also related 
to funding: Yongpradit expressed concern with current funding levels, noting 
that CEd requires more PD, standards development, and support for task 
forces to create implementation plans.

	8	 The paper examined data from a subset of about 5,000 users in January 2012 (Fields, Giant, & 
Kafai, 2013).

	9	 http://​ecepalliance.org/​resources/​landscape-​reports
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3.4.4  Pluralism in CEd: Exploring New Domains and Tools

Another systemic issue raised by many interviewees and the literature was the 
importance of allowing for different ways of doing Computing, in terms of tools, 
programming languages, developmental levels, and approaches to organizing 
one’s practice. In 1990, Sherry Turkle and Seymour Papert published an influ-
ential paper on epistemological pluralism, in which they described a study where 
children engaged in programming in a variety of non-canonical ways that were all 
ultimately successful (Turkle & Papert, 1990). Even though some children were 
violating traditional programming practice (the “bricoleurs”), they were doing so 
in a personally meaningful way that allowed them to create a strong connection 
with programming. Echoes of this influential paper were heard in almost all the 
interviews, and the principle of epistemological pluralism appears to have taken 
hold in CEd at the K–​8 level. Grover (2017), however, pointed out that the epis-
temological pluralism approach needs to be combined with the teaching of some 
agreed-​upon concepts and programming practices. When Resnick (2017) pointed 
out the need to keep pushing for epistemological pluralism, he noted that some 
systems only reward students for standard ways of doing coding (i.e., the smallest 
number of blocks when solving a puzzle), and some automated assessment 
programs still grade students solely based on the number and types of program-
ming blocks they use. The interviewees also expressed the belief that traditional 
professional or college-​level practices should not be automatically used in K–​8 
environments, since nontraditional approaches to programming (such as brico-
lage) may make sense only for younger students, even if advanced programmers 
might sometimes make use of these techniques as well (Berland, Martin, & Benton, 
2013; Blikstein, 2011; Blikstein et al., 2014; Brennan, 2013; Graham, 2004).

3.4.5  Curriculum and Instructional Materials

The production of a quality curriculum and curricular materials is, for many 
interviewees, a key component for successful CEd implementations at scale. 
The interviewees noted that this is an area of significant and ongoing challenge 
despite efforts such as the K–​12 CS Framework (K–​12 Computer Science 
Framework Steering Committee, 2016):

No one yet has written out a full, coherent K–​12 curriculum built around a 
foundational framework. The K–​12 CS Framework and the CSTA standards 
have laid out concepts, practices, and performance expectations but how do 
these things get manifested in curriculum and activities and experiences in 
K–​12? That is a huge problem in computing right now that directly affects 
implementation.
(Yongpradit, 2017)

Creating comprehensive curriculum materials is especially challenging because 
there is a natural tension between uniformity and the potential for custom-
ization to the learners’ interests. Many interviewees noted the need to design 
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culturally and personally relevant curricula that would cater to diverse 
populations (Buechley, 2017; Margolis, 2017; Resnick, 2017; Shapiro, 2017):

The most important challenge is relating computing to [students’] culture and 
their identity. If  you can get someone excited about something and engaged, 
they are incredibly motivated to learn.
(Buechley, 2017)

Another important principle for curriculum design in CEd is the peda-
gogical approach in terms of  how students will come into contact with the 
programming language. Pears et al.’s (2007) review of  the literature found 
three major approaches: (a) focus on generic problem-​solving; (b) focus on 
learning a particular programming language; and (c) focus on code produc-
tion, or project-​oriented CEd courses. As we discussed previously, the focus 
on higher-​order problem-​solving skills is problematic. Palumbo’s (1990) 
review examined transfer between learning to program and problem-​solving 
and concluded that more advanced forms of  transfer (far or generalized 
transfer) should not be expected in introductory courses, since typically 
there is no time to develop such skills. In other words, if  curricula aim for the 
transfer of  problem-​solving skills to other domains, explicit time and effort 
should be put into it. Scholarship has shown that positive results in problem-​
solving require a high involvement from teachers and well-​developed theor-
etical foundations (Clements, 1990; De Corte & Verschaffel, 1989), as well 
as a considerable time investment. In one study, 150 hours of  experience 
were needed to generate positive learning gains in problem-​solving (Liu, 
1997). Guzdial noted that this issue of  programming and transfer is far from 
resolved, especially when the affinities and the unity of  content and compu-
tation are not clear:

Most people don’t teach programming for transfer, and if  they did, they 
would not be able to cover as much of programming. I think it is a zero-​sum 
game: teach for programming fluency or teach for transferable problem-​
solving skills. You cannot get both in the same time.
(Guzdial, 2017)

The second approach –​ focus on learning a particular programming language –​  
is by far the most common. Textbooks, lesson plans, and assessments are 
designed based on the constructs of a programming language. This focus, 
common in introductory college courses and Advanced Placement (AP) classes 
in the USA, has been criticized by several interviewees as being too limited and 
too vocational. Buechley, for example, praised new initiatives (such as the new 
Advanced Placement Computer Science Principles course) that are moving AP 
classes away from the “one-​language” model:

So [Computer Science Principles] is a class that provides a different model 
of engaging with computing than the traditional computer science AP class 
did. And a model that is much more focused on foundational concepts and 
big ideas as opposed to the nuts and bolts of programming in a particular 
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language. And because of that, it has the potential to provide more accessible 
pathways to more diverse kids, which is really important.
(Buechley, 2017)

The third approach is code production or project-​oriented learning. Instead 
of small assignments and tasks based on language constructs, or more general 
problem-​solving training, students learn to create more complex systems to 
accomplish a task through projects. Even though this approach is harder to 
structure and assess, it seems to be more aligned with the approaches advocated 
by most interviewees. Resnick, for example, advocated for a project-​oriented 
approach rather than small puzzles or language-​based activities:

There are a lot of schools where they do something with coding but it is done 
very superficially, just learning a few tricks of how to put some blocks together 
… but not really connecting in a deep way. [CEd should not be] just puzzles for 
kids learning to solve a problem, but a platform for expressing yourself.
(Resnick, 2017)

Another common type implementation of code production or project-​oriented 
approaches has been to make use of Computer Science-​inspired mathematics 
and science practices. Science and mathematics as professional practices have 
been deeply transformed by computation, both in terms of the core disciplines 
themselves and the creation of entirely new fields such as bioinformatics, com-
putational statistics, chemometrics, and neuroinformatics. Efforts to improve 
and modernize the teaching of science and mathematics should include com-
putation as a core curricular component. Skills that can be developed through 
CS-​infused science and mathematics include the ability to deal with open-​ended 
problems, the creation of abstractions, recognizing and addressing ambiguity 
in algorithms, manipulating and analyzing data, and creating models and 
simulations (Weintrop et al., 2016).

Most of the interviewees identified infusing mathematics and science cur-
ricula with computation as a productive way to bring Computing to classrooms. 
diSessa (2018) highlighted that “there are people deeply enmeshed in non-​CS 
disciplines, yet sufficiently expert with CS ideas and practices, to really get this 
agenda accomplished now.” And Grover stated:

It is very synergistic … computation makes the science and the math more 
real, authentic, and engaging. Students see aspects of the discipline that they 
would not see in the static form of learning from a textbook. Conversely, com-
putation becomes alive because of the context in which it is used.
(Grover, 2017)

Some interviewees expressed skepticism as to whether there are a sufficient 
number of  available CEd teachers and whether it is possible to carve out 
space in the busy K–​8 curriculum for a brand-​new discipline. As a result, the 
interviewees noted that retraining science and mathematics teachers to add 
Computing to their teaching and generating new accompanying CS-​infused 
lesson plans might be a more sustainable approach. Yongpradit (2017) also 
suggested that enabling teachers to receive dual certification in mathematics 
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(or science) and Computing might be a positive alternative approach for 
addressing the current teacher shortage.

3.4.6  Teacher Development

One last (and crucial) systemic obstacle for large CEd implementations is the 
preparation of  teachers. Ultimately, it is the interactions between teachers 
and students in classrooms that will determine whether students learn suc-
cessfully. Thus, it is not surprising that the interviewees expressed the belief  
that teachers are the linchpin in any effort to implement or change CEd. The 
preparation, effective development, and retention of  CEd teachers will need 
to be prioritized.

Teacher development was a central concern for most interviewees. Clancy 
(2017), Margolis (2017), and Yongpradit (2017) highlighted the challenges in 
building the CEd teacher workforce, and noted the need for teacher certifica-
tion, training programs based on these certifications, and incentives for teachers 
to seek these qualifications. Guzdial (2017) highlighted the importance of pre-​
service teacher development as the most viable way to achieve sustainability.

The need for equity in teacher development was also highlighted, since 
more affluent schools are more capable of offering high-​quality programs. 
Interviewees noted that it is not enough to expose teachers to Computing con-
tent. Teachers need time to practice inclusive CEd, and these pedagogies should 
be interwoven into the entire teacher preparation program. Margolis (2017) also 
raised the need to educate teachers regarding bias, so that they can reflect on 
belief  systems and perceptions about which students can excel in computing and 
how these beliefs would impact their relationships with students.

In general, there was concern about the rapid scaling of several initiatives and 
the capacity to prepare thousands of teachers adequately in a very short time. 
The interviewees argued that scaling too quickly disproportionately impacts 
underserved communities and populations that are historically excluded 
from STEM.

Margolis was particularly concerned with making equity a core tenet in 
teacher development, mentioning that, in her research, she encountered signifi-
cant variability among teachers in their capacity for guiding deeper cognitive 
thinking. She found that teaching was particularly productive when teachers 
identified the specific Computing concepts for the students while they were 
learning them and discussed how they could relate the concepts to other areas 
of  knowledge. The capacity to competently guide students in this way was 
found to be a predictor of  student learning, but it varied considerably among 
teachers. Not surprisingly, teachers in less affluent areas were found to be the 
least prepared to enact these strategies in the classroom, in part because their 
districts had less funding for teacher PD. Margolis adds:

Not only do teachers need to be introduced to the CS content, but they need 
to have time practicing pedagogies that are aimed at creating an inclusive 
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CS learning environment, building on the assets, interests, and motivations 
of traditionally underrepresented students. Also, CS teacher PD must have 
equity and inclusion woven throughout everything that happens in PD, not 
just isolating this issue to a discrete one-​hour discussion. For instance, as 
teachers are experiencing teaching lessons during PD, the other teachers who 
are in the roles as students or observers should be reflecting on their own 
experiences of inclusion (or not), thinking about their own students in their 
classrooms, and what works (or does not) to ignite the interest of all students. 
Also, teachers need time, and a safe learning environment, to reflect on all 
the biased belief  systems associated with which students can and cannot excel 
in computing, to reflect on their own belief  systems, and how belief  systems 
impact their relationships with the students in their classrooms. Traditionally 
CS education has not been a place where these types of discussions or 
reflections have taken place, but they must if  we are to broaden participation 
in computing.
(Margolis, 2017)

Teacher development is further discussed in Chapter 25.

3.5  Conclusion

The year 2017 marked the 50th anniversary of the Logo programming 
language. In just five decades, an entirely new domain of knowledge has evolved 
from an idea in the minds of a few visionaries to national public policy. And 
while CEd is a relatively new discipline with a less substantial research base, 
there is much reason for optimism. Ensuring that we continue this progress, 
however, requires the commitment, work, and flexibility of a large number 
of stakeholders. We are now facing the growing pains intrinsic to progressing 
from pilot projects to large-​scale implementations, and we must look and work 
beyond these growing pains to ensure that CEd fulfills its educational promise 
in sustainable and equitable ways.

Despite these challenges, CEd offers many advantages and the potential 
to transform learning environments and school work. Computing includes 
algorithms, design, data, making, creativity, and personal expression. CEd also 
facilitates productive collaboration in the classroom, connects to personally 
meaningful aspects of  the lives of  students, allows for new types of  knowledge 
and assessments to be valued in schools, boosts the potential of  project-​based 
learning approaches, and opens possibilities of  innovative ways to organize 
learning environments (e.g., Berland et al., 2013; Blikstein et al., 2014; Brennan, 
2013; Buechley & Eisenberg, 2008; diSessa, 2000; Sherin, 2001; Turkle & 
Papert, 1990). Addressing and harnessing these advantages is important as 
our world becomes more technological and digital, and equitable participation 
requires computational fluency. This makes CEd necessary in K-​8 not just as 
an elective subject, but as a mandatory topic. There is no question anymore 
about the importance of  CEd and its place and need in public education, but 
there are differing opinions on why and how it should be done. Among the 
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most prominent rationales for increasing access to CEd is that it can serve as a 
foundational literacy upon which other knowledge/​activities can be built, and 
as a powerful context for profound, authentic, and interdisciplinary learning in 
other subjects. CEd can serve as an expressive, creative medium to allow young 
learners to express ideas in ways that are socially and culturally relevant, and it 
can also be a valuable tool for civic and political participation.

Given the importance of CEd, many of the interviewees believe that national 
rollouts of robust programs will require massive investment in the creation of 
state-​level standards and curricula, teacher preparation and certification, soft-
ware/​hardware infrastructure, and research. It is not clear if  all stakeholders 
are aware of the depth of the effort, but many feel that partial rollouts have the 
potential to increase social disparities and educational inequalities, privileging 
more affluent or well-​resourced schools and districts. Additionally, although 
large-​scale “CS exposure” programs are reaching millions of children, there is 
concern that they do not guarantee sustained engagement, particularly for under-
served youth. Addressing these concerns requires better metrics, arms-​length 
evaluation of programs, and more consensus on what constitutes success. In 
addition, exposure programs could benefit from follow-​up activities, curricula, 
and sufficient resources to support deeper learning and stronger outcomes. And 
despite the growing demand for large-​scale rollouts and the temptation of the 
adoption of one single implementation model, researchers advocate for a reper-
toire of well-​studied and well-​rationalized models that are sufficiently flexible to 
be adapted to multiple local contexts.

With an eye toward stronger outcomes, a reliance on high-​quality curricula 
and assessments alone is not a guarantee of effective implementation. Education 
is always instantiated by teachers, so attention to pedagogy, teacher support, 
and the complex dynamics of adopting new curricula is crucial. Specifically, we 
found that teacher development is a key factor in the success of CEd, both pre-​
service and in-​service. In addition, the understanding of equity, inclusiveness, 
and unconscious biases about CS success are viewed as necessary to teacher 
development programs.

In sum, the time is ripe for thoughtfully targeted and comprehensive action to 
advance the CEd community. A large and diverse body of perspectives indicates 
that we must address the social, economic, and cultural barriers surrounding 
computing. If  access and inclusiveness are addressed effectively, we can meet 
current and future workforce and citizenship demands. And we can do so in 
ways that equitably drive technological and social progress and give youth new 
avenues for personal expression and empowerment. Above all, we should avoid 
the trivialization and the oversimplification of computing knowledge, making it 
another missed opportunity to bring an exciting new set of practices, content, 
and cognitive tools to students.

This effort requires the cooperation and coordination of interdisciplinary, 
inter-​sector teams that thoughtfully design, implement, evaluate, and learn 
from CEd initiatives. Only in this way can we achieve the hoped-​for scale and 
sustainability and realize the ultimate vision of generations of researchers, 
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practitioners, and policy-​makers that have been trying, for the last 50 years, to 
bring computing to all students.
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